【DataWhale数据可视化学习】布局格式定方圆

DataWhale学习资源:http://datawhale.club/t/topic/542

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicoide_minus'] = False #用来正常显示负号

子图

使用plt.subplots绘制均匀状态下的子图

  • 返回元素分别是画布和子图构成的列表,第一个数字为行,第二数据为列
  • figsize参数可以指定整个画布的大小
  • sharex和sharey分别表示是否共享横轴和纵轴的刻度
  • tight_layout函数可以调节子图的相对大小使字符不会重叠
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, axs = plt.subplots(2, 5, figsize = (10, 4), sharex=True, sharey= True)
fig.suptitle('样例1', size= 20)

for i in range(2):
    for j in range(5):
        axs[i][j].scatter(np.random.randn(10), np.random.randn(10))
        axs[i][j].set_title('第%d行,第%d列' % (i+1, j+1))
        axs[i][j].set_xlim(-5,5)
        axs[i][j].set_xlim(-5,5)
        if i == 1: axs[i][j].set_xlabel('横坐标')
        if j == 1: axs[i][j].set_ylabel('纵坐标')

fig.tight_layout( ) #tight_layout会自动调整子图参数,使之填充整个图像区域。

plt.show( )

在这里插入图片描述

使用GridSpec绘制非均匀子图

非均匀包含两层含义:

  • 图的比例大小不同但没有跨行或跨列
  • 图为跨列或者跨行的状态

利用 add_gridspec 可以指定相对宽度比例 width_ratios 和相对高度比例参数 height_ratios。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig = plt.figure(figsize=(10, 4))
spec = fig.add_gridspec(nrows= 2, ncols=5, width_ratios=[1,2,3,4,5], height_ratios=[1,3])
fig.suptitle('样式2',size= 20)
for i in range(2):
    for j in range(5):
        ax = fig.add_subplot(spec[i, j]) #自定义大小
        ax.scatter(np.random.randn(10), np.random.randn(10))
        ax.set_title('第%d行,第%d列' % (i + 1, j + 1))
        if i == 1: ax.set_xlabel('横坐标')
        if j == 0: ax.set_ylabel('纵坐标')

fig.tight_layout()

plt.show()

在这里插入图片描述

子图扩展

实现非均匀子图合并以及跨图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig = plt.figure(figsize=(10, 4))
spec = fig.add_gridspec(nrows=2, ncols=6, width_ratios=[2,2.5,3,1,1.5,2], height_ratios=[1,2])
fig.suptitle('样例3', size=20)
# sub1
ax = fig.add_subplot(spec[0, :3])
ax.scatter(np.random.randn(10), np.random.randn(10))
# sub2
ax = fig.add_subplot(spec[0, 3:5])
ax.scatter(np.random.randn(10), np.random.randn(10))
# sub3
ax = fig.add_subplot(spec[:, 5])
ax.scatter(np.random.randn(10), np.random.randn(10))
# sub4
ax = fig.add_subplot(spec[1, 0])
ax.scatter(np.random.randn(10), np.random.randn(10))
# sub5
ax = fig.add_subplot(spec[1, 1:5])
ax.scatter(np.random.randn(10), np.random.randn(10))
fig.tight_layout()

plt.show()

在这里插入图片描述

均匀子图的极坐标

绘制均匀子图的极坐标时,是plt.subplot()。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

N = 150
r = 2 * np.random.rand(N)
theta = 2 * np.pi * np.random.rand(N)
area = 200 * r**2
colors = theta


plt.subplot(projection='polar')   # 要用subplot
plt.scatter(theta, r, c=colors, s=area, cmap='hsv', alpha=0.75)
# cmap: 配色方案
# c:color
# s: scale
# alpha:透明度

plt.show()

在这里插入图片描述
颜色图表:
在这里插入图片描述

子图上的方法

在ax对象上定义了和plt类似的图形绘制函数,常用的有:plot、hist、scatter、bar、barh、pie。

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots(figsize=(4, 3))
ax.plot([1,2],[2,1])

plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots(figsize=(4, 3))
ax.hist(np.random.randn(1000))

plt.show()

在这里插入图片描述
常用直线的画法为:axhline、axvline、axline(水平、垂直、任意方向)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots(figsize=(4,3))
ax.axhline(0.5,0.2,0.8)
ax.axvline(0.5,0.2,0.8)
ax.axline([0.3,0.3],[0.7,0.7])

plt.show()

在这里插入图片描述
使用grid可以加灰色网络。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots(figsize=(4,3))
ax.grid(True)

plt.show()

在这里插入图片描述
使用 set_xscale, set_title, set_xlabel 分别可以设置坐标轴的规度(指对数坐标等)、标题、轴名

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, axs = plt.subplots(1, 2, figsize=(10, 4))
fig.suptitle('大标题', size=20)
for j in range(2):
    axs[j].plot(list('abcd'), [10**i for i in range(4)])
    if j==0:
        axs[j].set_yscale('log')
        axs[j].set_title('子标题1')
        axs[j].set_ylabel('对数坐标')
    else:
        axs[j].set_title('子标题1')
        axs[j].set_ylabel('普通坐标')
fig.tight_layout()

plt.show()

在这里插入图片描述
legend, annotate, arrow, text 对象也可以进行相应的绘制

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots()
ax.arrow(0, 0, 1, 1, head_width=0.03, head_length=0.05, facecolor='red', edgecolor='blue')
ax.text(x=0, y=0,s='这是一段文字', fontsize=16, rotation=70, rotation_mode='anchor', color='green')
ax.annotate('这是中点', xy=(0.5, 0.5), xytext=(0.8, 0.2), arrowprops=dict(facecolor='yellow', edgecolor='black'), fontsize=16)

plt.show()

在这里插入图片描述

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

fig, ax = plt.subplots()
ax.plot([1,2],[2,1],label="line1")
ax.plot([1,1],[1,2],label="line1")
ax.legend(loc=1)

plt.show()

在这里插入图片描述
图例中的Loc参数如下:
在这里插入图片描述

作业

墨尔本的温度情况

fig,axs = plt.subplots(2,5, figsize=(12,4), sharex=True, sharey=True)
fig.suptitle("墨尔本1981年至1990年月温度曲线", size=20)
for i in range(2):
    for j in range(5):
        axs[i][j].plot(range(1,13), ex1.iloc[(i*5+j):(i*5+j+12),1], marker=".")
        axs[i][j].set_title(str(1981+i*5+j)+"年")
        axs[i][j].set_xticks(range(1,13))
        axs[i][j].set_ylim(5,20)
        if j == 0:
            axs[i][j].set_ylabel("气温")
            
fig.tight_layout()

plt.show() 

画出数据的散点图和边际分布

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号

data = np.random.randn(2, 150)

fig = plt.figure(figsize=(8,8))
spec = fig.add_gridspec(nrows=2, ncols=2, width_ratios=[4,1], height_ratios=[1,4]) 

ax1 = fig.add_subplot(spec[1,0])
ax1.scatter(data[0],data[1])
ax1.grid(True)

ax2 = fig.add_subplot(spec[0,0],sharex=ax1)
ax2.hist(data[0], rwidth=5)
ax2.axis('off')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['bottom'].set_visible(False)
ax2.spines['left'].set_visible(False)

ax3 = fig.add_subplot(spec[1,1],sharey=ax1)
ax3.hist(data[1], orientation='horizontal')
ax3.axis('off')
ax3.spines['top'].set_visible(False)
ax3.spines['right'].set_visible(False)
ax3.spines['bottom'].set_visible(False)
ax3.spines['left'].set_visible(False)
fig.tight_layout()

plt.show( )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值