GAMES101 Transformation Cont.

本文探讨了3D变换中的旋转矩阵正交性质,Viewing Transformation中相机设置的原理,以及Model和View Transformation如何影响场景呈现。重点讲解了平行与透视投影的区别,如何将模型标准化和压缩到透视投影的准备步骤。
摘要由CSDN通过智能技术生成

3D Transformation

旋转矩阵是正交矩阵
(A的逆=A的转置,则A是正交矩阵)

Viewing Transformation

Model Transformation

View Transformation

位置、朝向(Look-at/gaze)、向上的方向确定一个相机
相机的标准位置:(0,0,0)、朝向-z、向上的方向为y
这里就存在一个问题,因为规定的是朝向-z(为了保持右手系),所以近的数大,远的数小

Projection Transformation

平行投影:由平行线的投影线所产生的投影,像一个长方体
透视投影:由一点放射投影产生的投影,具有近大远小的特点,像一个锥

平行投影

将一个正方体变为规范(Canonical)正方体(x:[-,1] y:[-1,1] z:[-1,1])的过程(平移+缩放)。

透视投影

可以先将锥压缩为长方体再进行平行投影。
压缩过程:

  • 针对最近的面,所有点位置不变
  • 针对最远的面,点的z坐标不变,中心点位置不变
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值