梯度下降求最小值和线性方程(线性回归详解)

本文详细介绍了如何使用梯度下降法求解线性回归问题。首先通过二次函数的例子展示梯度下降寻找最小值的过程,然后在已知x和y的情况下,构建线性模型,求解最优的w和b,最后与sklearn的线性回归库进行比较,验证算法的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归

梯度下降法一般用于求解最小值,以下分别例举两种求最小值情况:
1)二次函数求最小值的情况
2)预测线性函数的情况(已知x和y,求解最合适的w和b,是预测误差最小)
以下就按照上述的两种情况进行分析。

1、二次函数求最小值的情况

1)首先导入包

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

2)定义二次函数与其导数方程,并画出函数图便于观察,也可以不画。

f = lambda x : x**2 -5*x + 10
g = lambda x : 2*x -5
x = np.linspace(-10,15,30)
plt.plot(x,f(x))

在这里插入图片描述
可以从图中观察或计算可得,最小值为2.5,用于与之后梯度下降求解到的最小值最对比。

3)开始使用梯度下降算法进行最小值求解

# 开始定义梯度下降算法
# 用于存放迭代结果,用于之后的可视化
result = []
# 随机初始化一个取最小值的x
v_ = np.random.randint(-10,10,size = 1)[0]
result.append(v_)
print('-----------随机初始化取最小值的x坐标',v_)
# 定义一个保存上一次迭代结果的变量
v_last = v_ + 1
# 设置结果的精准度
precision = 0.00001
# 设置最大迭代次数
max_count = 3000
# 迭代步幅
step = 0.1
count = 0
# 开始迭代
while True:
#     设置退出条件
    if np.abs(v_ - v_last) < precision:
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值