给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2 … vk}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
列出连通集,DFS和BFS两种不同的方法堆邻接矩阵进行遍历
#include<stdio.h>
#include<string.h>
int visit[100]={0};
int G[100][100];
void DFS(int i,int n);
void BFS(int i,int n);
int main(void) {
int n,i,m,a,b;
scanf ("%d %d",&n,&m);
for (i=0;i<m;i++) {
scanf ("%d %d",&a,&b);
G[a][b]=G[b][a]=1;
}
for (i=0;i<n;i++) {
if (visit[i]==0) {
printf ("{");
DFS(i,n);
printf (" }\n");
}
}
for (i=0;i<n;i++) {
visit[i]=0;
}
//visit[100]={0};
for (i=0;i<n;i++) {
if (visit[i]==0) {
printf ("{");
BFS(i,n);
printf (" }\n");
}
}
return 0;
}
void DFS(int i,int n) {
int j;
printf (" %d",i);
visit[i]=1;
for (j=0;j<n;j++) {
if(visit[j]==0&&G[i][j]==1) {
DFS(j,n);
}
}
}
void BFS(int i,int n) {
int a[100],j,x=-1,y=-1,last=0,v;
visit[i]=1;
a[++x]=i;
while(1) {
if (x==y) break;
v=a[++y];
printf (" %d",v);
for (j=0;j<n;j++) {
if (visit[j]==0&&G[v][j]==1) {
a[++x]=j;
visit[j]=1;
}
}
}
}