7-2 列出连通集 (25 分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:
按照"{ v1 v​2 … v​k}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }

列出连通集,DFS和BFS两种不同的方法堆邻接矩阵进行遍历

#include<stdio.h>
#include<string.h>
int visit[100]={0};
int G[100][100];
void DFS(int i,int n);
void BFS(int i,int n);

int main(void) {
	int n,i,m,a,b;
	scanf ("%d %d",&n,&m);
	for (i=0;i<m;i++) {
		scanf ("%d %d",&a,&b);
		G[a][b]=G[b][a]=1;
	}
	for (i=0;i<n;i++) {
		if (visit[i]==0) {
			printf ("{");
			DFS(i,n);
			printf (" }\n");
		}
	}
	for (i=0;i<n;i++) {
		visit[i]=0;
	}
	//visit[100]={0};
	for (i=0;i<n;i++) {
		if (visit[i]==0) {
			printf ("{");
			BFS(i,n);
			printf (" }\n");
		}
	}
	return 0;
} 
void DFS(int i,int n) {
	int j;
	printf (" %d",i);
	visit[i]=1;
	for (j=0;j<n;j++) {
		if(visit[j]==0&&G[i][j]==1) {
			DFS(j,n);
		}
	}
}
void BFS(int i,int n) {
	int a[100],j,x=-1,y=-1,last=0,v;
	visit[i]=1;
	a[++x]=i;
	while(1) {
		if (x==y) break;
		v=a[++y];
		printf (" %d",v);
		for (j=0;j<n;j++) {
			if (visit[j]==0&&G[v][j]==1) {
				a[++x]=j;
				visit[j]=1;
			}
		}
	}
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值