06-图1 列出连通集 (25分)

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。


输出格式:

按照"{ v1 v2 vk }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }

{ 3 5 }

{ 6 }


#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
const int N = 10;
int G[N][N], V, E;
void ListComponents(char mode);
void BFS(int v, int *visited);
void DFS(int v, int *visited);

int main() {
	int i, j, v1, v2;
	for (i = 0;i < N;i++) {
		for (j = 0;j <N;j++)
			G[i][j] = 0;
	}
	scanf("%d %d\n", &V, &E);
	for (i = 0;i < E;i++) {
		scanf("%d %d\n", &v1, &v2);
		G[v1][v2] = 1;
		G[v2][v1] = 1;
	}
	ListComponents('d');
	ListComponents('b');
	return 0;
}

void ListComponents(char mode) {
	int visited[N],i;
	memset(visited, 0, sizeof(visited));
	if (mode == 'd') {
		for (i = 0;i < V;i++) {
			if (!visited[i]) {
				printf("{");
				DFS(i, visited);
				printf(" }\n");
			}
		}
	}
	else {
		for (i = 0;i < V;i++) {
			if (!visited[i]) {
				printf("{");
				BFS(i, visited);
				printf(" }\n");
			}
		}
	}
}

void BFS(int v, int *visited) {
	queue<int> q;
	int i;
	visited[v] = 1;
	q.push(v);
	while (!q.empty()) {
		v = q.front();
		q.pop();
		printf(" %d", v);
		for (i = 0;i < V;i++) {
			if (G[v][i] && !visited[i]) {
				visited[i] = 1;
				q.push(i);
			}
		}
	}
}

void DFS(int v, int *visited) {
	int i;
	visited[v] = 1;
	printf(" %d", v);
	for (i = 0;i < V;i++) {
		if (G[v][i] && !visited[i])
			DFS(i, visited);
	}
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值