第四章:——栈、队、堆

本文详细介绍了栈、队列和堆的基本概念,以及如何通过这些数据结构实现特殊功能,如用队列模拟栈、用栈实现队列、设计常数级复杂度的栈和最小值查找,以及解决数组中第K大数和中位数问题。涉及到了堆的应用,如最大堆和最小堆在Kth大数查找中的角色。
摘要由CSDN通过智能技术生成

第四章:——栈、队、堆

(1)预备知识:

栈:先进后出。

队列:先进先出。

栈:

S.top():取出栈顶(仅仅是获得栈顶的数值)

S.empty():判断栈是否为空

S.push(x):将x添加至栈

S.pop():弹出栈顶(把栈顶的数值弹出删除)

S.size():栈的存储元素个数

队列:

Q.empty():判断队列是否为空

Q.front():返回队列头部元素

Q.back():返回队列尾部元素

Q.pop():弹出队列头部元素

Q.push(x):将x添加至队列

Q.size():返回队列的存储元素的个数

栈如何声明:std::stack S;//栈的关键字是stack

队列如何声明:std::queue Q;//队列的关键字是queue

(2)例1:使用队列实现栈:

设计一个,支持基本的操作,这个栈的内部存储数据的结构为队列,队列的方法只能包括push、peek(front)、pop、size、empty等标准队列的方法:意思是用队列实现栈

方法论述:

push(x):将元素x压入栈中

pop():弹出(移除)栈顶元素

top():返回栈顶元素

empty():判断栈是否是空

class MyStack
{
    public:
    MyStack()
    {}
    void push(int x)
    {}
    int pop()
    {}
    int top()
    {}
    bool empty
    {}
};

这边的重点思路就是通过利用:一个临时队列来实现顺序的调整:

#include<queue>
class MyStack
{
  public:
    MyStack(){}
    void push(int x)
    {
        std::queue<int>temp_queue;
        temp_queue.push(x);
        while(!_data.empty())
        {
            temp_queue.push(_data.front());
            _data.pop();
        }
        while(!temp_queue.empty())
        {
            _data.push(temp_queue.front());
            temp_queue.pop();
        }
    }
    int pop()
    {
        int x=_data.front();//取栈顶元素,即为队列头部元素
        _data.pop();
        return x;//返回取出的队列头部元素x,即为栈顶元素
    }
    int top()
    {
        return _data.front();//返回栈顶即直接返回队列头部元素
    }
    bool empty()
    {
        return _data.empty();
    }
    private:
    std::queue<int>_data;//_data数据队列存储元素的顺序就是栈存储元素的顺序
};

(3)例2:使用栈实现队列:设计一个队列,支持基本的队列操作,这个队列的内部存储数据的结构为栈,栈的方法只能包括push、top、pop、size、empty等标准的栈方法。

方法论述:

push(x):将元素x压入队列中

pop():弹出(移除)队列头部元素

peek():返回队列头部元素

empty():判断队列是否是空

class MyQueue
{
    public:
    MyQueue()
    {}
    void push(int x)
    {}
    int pop()
    {}
    int top()
    {}
    bool empty
    {}
};

思路重点:添加一个临时栈:

#include <stack>
class MyQueue
{
  public:
    MyQueue(){}
    void push(int x)
    {
        std::stack<int>temp_stack;
        while(!_data.empty)
        {
            temp_stack.push(_data.top());
            _data.pop();
        }
        temp_stack.push(x);
        while(!temp_stack.empty())
        {
            _data.push(temp_stack.top());
            temp_stack.pop();
        }
    }
    int pop()
    {
        int x=_data.top;
        _data.pop();
        return x;
    }
    int peek()
    {
        return _data.top();
    }
    bool empty()
    {
        return _data.empty();
    }
    private:
    std::stack<int>_data;
};

(4)例3:设计一个栈,支持如下操作,这些操作的算法复杂度需要是常数级,O(1):

方法概述:

push(x):将元素x压入栈中

pop():弹出(移除)栈顶元素

top():返回栈顶元素

getMin():返回栈内最小元素

class MinStack
{
  public:
    MinStack(){}
    void push(int x)
    {}
    void pop(){}
    int top(){}
    int getMin(){}//返回栈内最小元素
};

思考关键:用另一个栈,存储各个状态的最小值:

#include <stdio.h>
#include <stack>

class MinStack
{
  public:
    void push(int x)
    {
        _data.push(x);
        if(_min.empty()) _min.push(x);
        else{
            if(x>_min.top())
                x=_min.top();
            _min.push(x);
        }
    }
    void pop()
    {
        _data.pop();
        _min.pop()//数据栈喝最小栈同时弹出
    }
    int top()
    {
        return _data.top();
    }
    int getMin()
    {
        return _min.top();
    }
    private:
    std::stack<int> -data;
    std::stack<int> _min;
};

(5)例4:合法的出栈序列:已知从1至n的数字序列,按顺序入栈,每个数字入栈后即可出栈,也可在栈中停留,等待后面的数字入栈出栈后,该数字再出栈,求该数字序列的出栈序列是否合法?

设置一个栈依按照题中给出的出栈顺序,依次进入,发现最后栈不能为空,则说明不合理,为空则说明合理

#include <stack>
#include <queue>

bool check_is_valid_order(std::queue<int>&order)
{
    std::stack<int>S;
    int n=order.size();
    for(int i=0;i<n;i++)
    {
        S.push(i);
        while(!S.empty()&&S.top()==order.front())
        {
            order.pop();
            S.pop();
        }
    }
    if(!S.empty())
        return fasle;
    else return true;
}

(6)例5:简单的计算器:设计一个计算器,输入一个字符串存储的数学表达式,可以计算包括“(”、“)”、“+”、“-”四种符号的1数学表达式,输入的数学表达式字符串保证是合法的。输入的数学表达式中可能存在空格字符。

//字符串转换数字
#include <stdio.h>
#include <string>

int main()
{
    int number=0;
    std::string s="12345";
    for(int i=0;i<s.length;i++)
        number=number*10+s[i]-'0';
    printf("number =%d\n",number);
    return 0;
}
//计算
void compute(std::stack<int>&number stack,std::stack<char>&operation stack)
{
    if(number_stack.size<2) return;
    int num1=number_stack.top();
    number_stack_pop();
    int num2=number_stack.top();
    number_stack_pop();
    if(operation_stack.top()=='+')
        number_stack.push(num1+num2);
    else if(operation_stack.top()=='-')
        number_stack.push(num1-num2);
    operation_stack.pop();
}
#include <string>
#include <stack>

class Solution
{
    public:
    int calculate(std::string s)
    {
        static const int STATE_BEGIN=0;
        static const int NUMBER_STATE=1;
        static const int OPERATION_STATE=2;
        std::stack<int>number_stack;
        std::stack<char>operation_stack;
        int number=0;
        int STATE=STATE_BEGIN;
        int compuate_flag=0;
        for(int i=0;i<s.length();i++)
        {
            if(s[i]==' ')
                continue;
            switch(STATE)
            {
                case STATE_BEGIN:
                    if(s[i]>='0'&&s[i]<='9')
                        STATE=NUMBER_STATE;
                    else
                        STATE=OPERATION_STATE;
                    i--;
                    break;
                case NUMBER_STATE:
                    if(s[i]>='0'&&s[i]<='9')
                        number=number*10+s[i]-'0';
                    else
                    {
                        number_stack.push(number);
                        if(compuate_flag==1)
                            compute(number_stack,opteration_stack);
                        number=0;
                        i--;
                       STATE=OPERATION_STATE;
                        break;
                    }
                 case OPERATION_STATE:
                        if(s[i]=='+'||s[i]=='-')
                        {
                            operation_stack.push(s[i]);
                            compuate_flag=1;
                        }
                        else if(s[i]=='(')
                        {
                            STATE=NUMBER_STATE;
                            compuate_flag=0;
                        }
                        else if(s[i]>='0'&&s[i]<='9')
                        {
                            STATE=NUMBER_STATE;
                            i--;
                        }
                        else if(s[i]==')')
                            compute(number_stack,opteration_stack);
                    if(number!=0)
                    {
                        number_stack.push(number);
                		compute(number_stack,opteration_stack);
                    }
                    if(number==0&&number_stack.empty())
                    {
                        return 0;
                    }
                    return number_stack.top();
            }
        }
    }
};

(7)堆的预备:

(8)例6:数组中第K大的数:已知一个未排序的数组,求这个数组中第K大的数字。

直接对数组排序是O(NlogN)的时间复杂度。
所以就可以考虑用最大堆和最小堆来解决问题。

#include<vector>
#include<queue>
class Solution:
{
    public:
    int findKthLargest(std::vector<int>&nums,int k)//最小堆
    {
        std::priority queue<int,std::vector<int>,std::greater<int>> Q;
        for(int i=0;i<nums.size();i++)
        {
            if(Q.size()<k)
                Q.push(nums[i]);
            else if(Q.top()<nums[i])
            {
                Q.pop();
                Q.push(nums[i]);
            }
        }
        return Q.top();
    }
}

(9)例9:寻找中位数:设计一个数据结构,该数据结构动态维护一组数据,且支持如下操作:

(1)添加元素:void addNum(int num),将整型num添加至数据结构中。

(2)返回数组的中位数:double findMedian(),返回其维护的数据的中位数。

中位数的定义为:

(1)若数据个数为奇数,中位数是该数组排序后中间的数。[1,2,3]->2

(2)若数据个数为偶数,中位数是该组数排序后中间的两个数字的平均值。[1,2,3,4]->2.5

void addNum(int num)
{
    if(bid_queue.empty())
    {
        bid_queue.push(num);
        return ;
    }
    if(big_queue.size()==small_size())
    {
        if(num<big_queue.top())
            big_queue.push(num);
        else
            small_queue.push(num);
    }
    else if(big_queue.size()>small_queue.size())
    {
            if(num<big_queue.top())
            {
                small_queue.push(big_queue.top());
                big_queue.pop();
                big_queue.push(num);
            }
            else{
                small_queue.push(num);
            }
      }
      else if(big_queue.size()<small_queue.size())  
      {
          if(num>small_queue.top())
          {
              big_queue.push(small_queue.top());
              small_queue.pop();
              small_queue.push(num);
          }
          else{
              big_queue.push(num);
          }
      }
    }
}
double findMedian()
{
    if(big_queue.size()==small_queue.size())
    {
        return (big_queue.top()+small_queue.top())/2;
    }
    else if(big_queue.size()>small_queue.size())
    {
        return big_queue.top();
    }
    else if(big_queue.size()<small_queue.size())
    {
        return small_queue.top();
    }
}
          small_queue.pop();
          small_queue.push(num);
      }
      else{
          big_queue.push(num);
      }
  }
}

}


```c++
double findMedian()
{
    if(big_queue.size()==small_queue.size())
    {
        return (big_queue.top()+small_queue.top())/2;
    }
    else if(big_queue.size()>small_queue.size())
    {
        return big_queue.top();
    }
    else if(big_queue.size()<small_queue.size())
    {
        return small_queue.top();
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值