Python从入门到人工智能
文章平均质量分 96
恭喜发现宝藏专栏!限时69.9,长期更新,欢迎订阅学习!强烈推荐大学生、研究生以及对人工智能/图神经网络感兴趣的朋友订阅,深度解析图数据挖掘。该专栏不止于Python!(机器学习&深度学习) 常看常新,所谓知识,应当是预习的,回顾的,思考的。
优惠券已抵扣
余额抵扣
还需支付
¥69.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
追光者♂
人生如梦,醒悟皆空。
展开
-
全15万字丨PyTorch 深度学习实践、基础知识体系全集;忘记时,请时常回顾。
本篇博客介绍的知识是——深度学习之PyThon框架基础。这是深度学习/神经网络的基础,多次回顾,会有不一样的感受。书读百遍,其义自见。原创 2023-02-20 21:38:08 · 4473 阅读 · 51 评论 -
2023.2.9,周四【图神经网络 学习记录26】动态超图 之 DHNN (DHGNN):动态构建超图 (DHG): KNN/KMeans,超图卷积 (HGC)。
动态超图 之 DHNN (DHGNN):动态构建超图 (DHG):KNN/KMeans,超图卷积 (HGC)。原创 2023-02-09 20:52:08 · 1155 阅读 · 6 评论 -
2023.1.15,周日【图神经网络 学习记录1】图的基本概念:如何计算度中心性、特征向量中心性、中介中心性、连接中心性 | 网页排序算法之PageRank:求PageRank值、西游记人物节点重要度
关于【图神经网络】的学习笔记,涵盖 图基础知识+小的案例应用+遇到的Bug解决。原创 2023-01-16 13:05:38 · 769 阅读 · 2 评论 -
研究生系统化入门教程(五)【机器学习】回归与聚类算法:线性回归;欠拟合与过拟合;线性回归的改进-岭回归;分类算法-逻辑回归与二分类(小案例:波士顿房价预测,癌症分类预测-良/恶性乳腺癌肿瘤预测)
线性回归(Linear regression) 是利用回归方程(函数) 对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。特点:只有一个自变量的情况称为单变量回归,大于一个自变量情况的叫做多元回归。那么怎么理解呢?期末成绩:0.7×考试成绩+0.3×平时成绩房子价格 = 0.02×中心区域的距离 + 0.04×城市一氧化氮浓度 + (-0.12×自住房平均房价) + 0.254×城镇犯罪率上面两个例子,我们看到特征值与目标值之间建立的一个关系,这个可以理解为回归方程。原创 2024-10-23 16:56:57 · 57 阅读 · 0 评论 -
研究生系统化入门教程(二)【机器学习】详解特征工程:特征抽取(以TF-IDF为例),特征预处理(归一化、标准化),特征降维,主成分分析;| 常用API和模块调用 | 低方差特征过滤
目标了解数值型数据、类别型数据特点应用MinMaxScaler实现对特征数据进行归一化应用StandardScaler实现对特征数据进行标准化什么是特征预处理呢?# 这是 scikit-learn的解释翻译过来:通过一些转换函数 将特征数据 转换成更加适合算法模型的特征数据过程我们可以通过上图来理解。通过对原始数据进行变换 把数据映射到(默认为[0,1])之间注意最大值最小值是变化的,另外,最大值与最小值非常容易受异常点影响,所以这种方法鲁棒性较差,只适合传统精确小数据场景。怎么办呢?原创 2024-09-10 07:41:25 · 87 阅读 · 0 评论 -
【图自动编码器】基础介绍 及 基于PyTorch的图自动编码器实例代码 | MLP应用于节点级别和图级别的任务实例(附实例代码+数据集)
首先介绍【图自动编码器】基础概念以及基于PyTorch的图自动编码器实例代码。然后介绍MLP应用于节点级别和图级别的任务实例(附实例代码+数据集)相关知识。原创 2024-06-03 06:47:05 · 192 阅读 · 2 评论 -
<8>【深度学习 × PyTorch】矢量化加速,(可视化)正态分布与平方损失,分析:“最小化均方误差” 怎么来的?附:从生物学角度来看待神经网络,深度学习中的灵感都从哪儿来?
上篇中,我们初识了线性神经网络,本篇我们继续来学习一些实用的小技巧。主要介绍我们在训练模型时 为何要进行矢量化加速以及如何进行矢量化加速,并且在人工智能科学中常用到的平方损失函数和正态分布的知识,为了便于理解,给出一个简单的实例即计算正态分布并可视化,进一步地从数学角度分析最小化均方误差的由来。最后从真正的生物学神经网络来科普神经网络。原创 2024-11-11 11:38:59 · 23 阅读 · 0 评论 -
【机器学习】亚马逊云科技基础知识:以推荐系统为例。你知道机器学习的关键所在么?| 机器学习管道的各个阶段及工作:以Amazon呼叫中心转接问题为例讲解
【极简机器学习】什么是机器学习?机器学习如何解决业务问题?什么时候适合使用机器学习模型?机器学习管道包括哪些阶段?…本篇将简要介绍机器学习领域的相关概念、术语和流程!通过亚马逊云科技机器学习管道全球首席培训师的讲解,相信你会对机器学习有新的认识!原创 2023-12-09 08:35:14 · 360 阅读 · 0 评论 -
【补档】基于PyTorch的手写数字识别
分享一个经典的人工智能(深度学习)案例——基于PyTorch的手写数字识别,附详细步骤讲解,帮助广大研究生入门深度学习中的经典科研案例!原创 2023-10-18 09:44:07 · 1303 阅读 · 0 评论 -
【问题记录与解决】KeyError: ‘acc‘ plt.plot(N[150:], H.history[“acc“][150:], label=“train_acc“) # KeyError: ‘
【问题记录与解决】KeyError: 'acc' plt.plot(N[150:], H.history["acc"][150:], label="train_acc") # KeyError: ' 人工智能 面试题:在深度学习中,常用的优化算法有哪些?请分别介绍它们的原理。原创 2022-11-08 22:02:35 · 995 阅读 · 1 评论 -
【同样一段代码】,用 GPU 跑就是快多了~(要是CPU同时跑这两段,居然发现 CPU 利用率 接近100%了,快要崩了)| 区块链 面试题:如何保证区块链网络的安全性?| 共识机制,网络安全...
还是遇到了问题,一波三折...最后还好,跑代码的时间减少了。只能说,GPU 牛啊!原创 2022-10-07 09:30:00 · 1811 阅读 · 9 评论 -
【Python】查看当前 GPU一些资源信息 | 区块链 面试题:区块链技术中,如何防止“双花”攻击?| 共识机制,区块确认,交易签名,UTXO模型,51%攻击防护
查看GPU的一些资源信息。【Python】查看当前 GPU一些资源信息 | 区块链 面试题:区块链技术中,如何防止“双花”攻击?| 共识机制,区块确认,交易签名,UTXO模型,51%攻击防护原创 2022-10-06 14:31:12 · 1403 阅读 · 0 评论 -
【问题解决】KeyError: ‘profit‘ raise KeyError(key) from err | 项目经理 面试:如何制定项目的质量标准和保证项目质量?
一次小问题记录。【问题解决】KeyError: ‘profit‘ raise KeyError(key) from err | 项目经理 面试:如何制定项目的质量标准和保证项目质量?原创 2022-10-04 18:33:01 · 1513 阅读 · 0 评论 -
【问题记录】SyntaxError: Non-UTF-8 code starting with ‘\xea‘ in file H:\Python | 附:项目经理面试题(项目管理工具分享)
问题记录。原创 2022-10-03 20:54:12 · 375 阅读 · 0 评论 -
【问题记录】utureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0
【问题记录】utureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0。另附:算法面试题:解释并实现贪心算法,并给出一个具体的应用例子。贪心算法的基本思想、原理以及应用实例:找零钱问题。原创 2022-09-24 09:04:11 · 907 阅读 · 0 评论 -
CentOS 初步测试 两台虚拟机 能否连通(ping 通)| Python 面试题:请解释 Python 中的迭代工具 zip() 和 enumerate() 的作用和用法。
使用 ping 命令初步测试两台虚拟机是否可以互连。原创 2022-09-03 10:25:30 · 3905 阅读 · 0 评论 -
详解【异质图卷积网络 RGCN】回顾:图神经网络问题的三大处理步骤 | 从起源说起,RGCN核心公式解释,两种降低模型参数量/优化的方式,附核心代码实现讲解
本篇,我们深入分析和学习RGCN的原理以及为何要这么做。首先让我们来回顾对于图神经网络问题的三大处理步骤,可以说,这是该深度学习模型的基本理解,后续都是在深化其中的细节处理。然后以容易理解的方式,引出异质图卷积网络RGCN的由来,主要讲解其核心公式和论文中作者所提出的两种降低模型参数量/优化的处理办法,并给出基础分解以及块对角分解的核心实现代码讲解。最后附上RGCN源代码及说明。原创 2023-09-19 15:26:53 · 707 阅读 · 2 评论 -
【知识图谱】入门:通俗理解 什么是知识图谱 | 知识图谱就是NLP吗?只适用于自然语言处理?那你就out了!| 知识图谱能帮助我们完成什么任务?
本篇针对当下十分热门的AI研究领域——知识图谱,从通俗易懂的例子开始讲起,让你快速理解什么是知识图谱以及知识图谱到底能干什么,能帮助我们完成什么任务:详细介绍了知识图谱现在能完成的各种经典任务。此外还较为清晰地说明了知识图谱与NLP的关系,让大家对知识图谱更加了解。(思路构造和知识分析讲解不易,点个赞吧!)原创 2023-09-07 08:21:25 · 1818 阅读 · 2 评论 -
详解【异质图注意力网络——HAN (附代码实现)】GAN原理 | ACM数据集、IMDB数据集 介绍 | 再次认识 metapath | 开发集 | dgl-API 回顾
本篇,我主要介绍异质图注意力网络的原理,具体介绍了什么是异质图(异构图),用通俗易懂且简明的语言说明白metapath,并给出异质图经典文章的获取方式,结合文章中的公式 介绍 HAN的原理即变换过程。此外,还给出了ACM数据集、IMDB数据集的介绍说明以及开发集的回顾、dgl-API的练习等内容。从下面的具体目录中就已经可以看出来,整理分析讲解不易,请点个关注呀!若是收藏的话,那会让博主更加开心!目录二对异质图的代码实现做了讲解。原创 2023-09-02 10:41:29 · 621 阅读 · 13 评论 -
<6>【深度学习 × PyTorch】概率论知识大汇总 | 实现模拟骰子的概率图像 | 互斥事件、随机变量 | 联合概率、条件概率、贝叶斯定理 | 附:Markdown 不等于符号、无穷符号
概率在深度学习中非常重要,主要用于描述 随机变量或事件的性质和可能性。在深度学习中,通常使用概率分布 来描述神经网络的参数和模型参数。例如,我们可以使用概率分布 来描述神经网络中的权重和偏置,或者使用概率分布来描述整个模型的概率模型。概率分布有很多种类型,包括离散型和连续型。离散型概率分布通常用于描述离散随机变量,如掷骰子或排列组合的情况,常见的离散型概率分布包括伯努利分布、二项式分布、离散高斯分布等。连续型概率分布通常用于描述连续随机变量,如正态分布、 student-t分布等。在深度学习中,我们通常原创 2023-08-28 13:42:43 · 1128 阅读 · 12 评论 -
【深度学习 & 推荐系统 & 基础知识篇】基于内容的推荐,基于协同过滤的推荐;余弦相似度:定义、在科研中的应用。传统的推荐方法 | 校招题目:UML中的动态视图有:...
介绍一些近期在科研中了解的内容,方面学习和回顾,推荐系统相关:基于内容的推荐、基于协同过滤的推荐,余弦相似度及其在科研中的应用 简单介绍,传统的会话推荐方法。此外,分享一道校招中的题目:下面()属于 UML 中的动态视图。A. 类图 B. 用例图 C. 对象图 D. 状态图 E. 时序图。原创 2023-08-24 20:45:34 · 915 阅读 · 13 评论 -
【科大讯飞·讯飞星火认知大模型·AI大语言模型】带你快速申请+多场景亲测,SparkDesk:“懂你所言,答你所问,创你所需,解你所难,学你所教”,和文心一言比起来,表现如何?附:AI生成视频教学
本篇,带领大家申请+体验讯飞星火AI大语言模型!讯飞星火认知大模型是新一代认知智能大模型,拥有跨领域知识和语言理解能力,能够基于自然对话方式理解与执行任务。2023年8月15日14:00,讯飞星火认知大模型2.0发布。据介绍:其星火API具备多元能力,可快速接入,创建专属AI应用。星火助手可作为我们的智能办公生活助手,让工作生活更简单高效。星火插件可扩展应用场景,满足个性化需求,探索大模型应用边界。原创 2023-08-17 14:29:11 · 469 阅读 · 0 评论 -
【深度学习&图神经网络】Node2Vec +GAT 完成 节点分类任务(含代码) | 附:其它生成节点特征向量的算法:DeepWalk、LINE(具体实现细节)、SDNE、MMDW
本篇主要介绍 Node2Vec+GAT 实现节点分类任务。主要分为两大步,其一是通过Node2Vec生成节点特征向量,其二是接上GAT,再去完成节点分类任务。并且在目录一中,针对图神经网络中的其他生成节点特征向量的方法,给出了它们较为详细地算法描述。原创 2023-08-14 08:07:57 · 1410 阅读 · 8 评论 -
【Python从入门到人工智能】14个必会的Python内置函数(11)—— 自定义函数操作可迭代对象 | 迭代器 | 可迭代对象打包成元组 | 实现切片对象 | 判断可迭代对象是否包括假值
本篇依然承接前边的内容——介绍Python中常见的内置函数 并 给出易懂的示例。例如,介绍了如何通过函数来操作可迭代对象、如何使用next()函数返回迭代器中的下一个元素、如何将可迭代对象打包成元组、如何实现切片对象、如何判断可迭代对象是否包括假值等等一系列丰富的案例。原创 2023-08-11 17:37:37 · 264 阅读 · 0 评论 -
系列文章之一文纵览机器学习(6)——文本数据的转换处理 | 图像数据的转换处理 | 附:CNN激活层可视化(附源代码)
之前介绍过机器学习模型的输入是以元素为数值的表格形式的数据。实际上,在自然语言处理领域,我们还需要处理不能直接作为输入的文本数据。我们应该对转换后的表格形式的数据应用机器学习模型。此外,实现了CNN激活层可视化。CNN激活层可视化的效果是指将CNN学习到的特征进行可视化展示,以便于观察和分析。具体来说,可视化的效果包括以下几个方面:(1)颜色编码:CNN学习到的特征通常是一些低层次的颜色、边缘等特征,将这些特征可视化,可以帮助人们更容易地观察到不同的层次。(2)轮廓图:将CNN学习到的特征在二维或三维空间中原创 2023-08-11 08:08:44 · 907 阅读 · 0 评论 -
【Bug记录与解决】Python报错 AttributeError: ‘DataFrame‘ object has no attribute ‘concat‘ 该怎么解决(解决方案汇总)
【Bug记录与解决】Python报错 AttributeError: ‘DataFrame‘ object has no attribute ‘concat‘ 该怎么解决(解决方案汇总)原创 2023-08-10 20:26:41 · 1996 阅读 · 0 评论 -
<7>【深度学习 × PyTorch】PyTorch API查阅指导 | 详解:线性神经网络之线性回归,基础小白必会术语:训练集、样本、标签、特征、权重、偏置(偏移量、截距)、损失函数、随机梯度下降
大家好!这是深度学习&PyTorch系列文章,本篇我们来学习PyTorch API的相关知识,介绍如何查找模块中的所有函数以及类,查找特点函数和类的特定用法,即学会查看文档,这应该是我们科研学习生活中的一项技能,这是需要练习的。第二节中,我们正式进入线性神经网络,以最经典的线性回归为例,介绍其基本元素,如线性模型中提到的权重、偏置等术语,何为损失函数,解析解是怎么回事儿,以及随机梯度下降等知识。原创 2024-02-16 08:01:37 · 94 阅读 · 12 评论 -
<5>【深度学习 × PyTorch】“自动微分”机制 | 通俗理解 pytorch中的autograd、backward | 实例详解tensors、grad_tensors
可以说,求导数是所有深度学习优化算法的关键步骤。尽管求导的计算很简单,只需要一些基本的微积分。 但其实对于复杂的模型,手动进行更新是一件很痛苦的事情(且过程中经常容易出错)。深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。 实际中,根据设计好的模型,系统会构建一个计算图(computational graph), 来跟踪计算是哪些数据通过哪些操作组合起来产生输出。自动微分使系统能够随后反向传播梯度。 这里,反向传播(backpropagate)意味着原创 2023-08-07 08:06:13 · 775 阅读 · 0 评论 -
【深度学习】详解 Node2Vec原理(含代码实现讲解) | NLP中训练词向量的基本原理和常见方法 | 跳字模型(Skip-gram)| MLP的核心机制
本篇文章深入浅出地介绍了Node2Vec算法的原理及代码实现(力求让小白也能看的懂!学得会!),简述了NLP中的词向量训练方法以及MLP,以及广度优先搜索和深度优先搜索等内容。读者能够快速了解这些算法和概念的核心思想和应用场景,为未来深入学习和应用提供扎实的基础。原创 2023-08-06 07:47:02 · 1164 阅读 · 0 评论 -
【AI可视化---04】点亮数据之旅:发现Matplotlib的奇幻绘图世界!用Python挥洒数据音符的创意乐章——这四篇就够了!
当谈到 Python中的数据可视化库时,Matplotlib是一个备受推崇和广泛使用的选择。本篇,我们将继续探索Matplotlib的魔力,以及它如何成为实现数据可视化的理想工具。探索Matplotlib的魔力,Python中的数据可视化艺术。从基础到高级特性,发现如何创造令人印象深刻的图表。品味Matplotlib的3D可视化,展现数据的全新魅力。实用技巧和技巧帮您发挥最大潜力。跟随这个完美指南,成为数据艺术的大师。祝大家学习顺利!原创 2023-07-27 16:27:39 · 705 阅读 · 0 评论 -
【AI可视化---03】掌握图形辉煌:探索Matplotlib对Python AI的影响!细说人工智能中的数据可视化,这三篇就够了!附:误差棒、置信区间、详解图像仿射变换...
Matplotlib是Python中最常用和强大的数据可视化库之一。本篇,我们继续学习Matplotlib的功能和灵活性,展示如何创建令人印象深刻的图形。无论你是数据分析师还是机器学习工程师,相信这都将提供宝贵的技巧和示例,帮助你更好地利用Matplotlib在Python中实现数据可视化。让我们一起开始探索这个令人兴奋的领域,让我们的图形更加引人注目吧!一起学习吧~原创 2023-07-27 13:20:53 · 732 阅读 · 2 评论 -
【智能可视化---02】艺术数据可视化:释放Python AI中Matplotlib的力量!寻觅AI里的Matplotlib,这两篇就够了!
在 Python人工智能领域中,Matplotlib是一款备受推崇的数据可视化库。它提供了强大而灵活的绘图工具,可以帮助开发者将数据直观地展示出来。本篇,我们将继续探讨Matplotlib的各种令人惊叹的功能和特性。无论是初学者还是经验丰富的开发者,相信这都将对深入了解Matplotlib以及如何在人工智能项目中运用它起到巨大的帮助。让我们一同探索Matplotlib的魅力,为数据可视化创造令人惊叹的效果吧!原创 2023-07-27 12:14:53 · 1092 阅读 · 1 评论 -
【智能可视化---01】揭示Python AI中Matplotlib的魅力,提升数据洞察力!探索AI 中的Matplotlib,这一篇就够了!
在 Python AI中,数据可视化成为了洞察深度和传达见解的关键。本文带你探索matplotlib库的魔力,将你的智能表达在绚丽的图形中。从基础图表绘制到高级类型,掌握数据可视化技巧、实例分析MNIST数据集,以及与NumPy的结合应用。挖掘matplotlib的潜力,释放独特的想象力。在这个视觉与智能交融的世界中,让我们一起探索吧!原创 2023-07-27 11:10:48 · 680 阅读 · 1 评论 -
详解【计算机类&面试真题】军队文职考试——第4期(真题+解析):网络时延的组成部分和产生,使用Python来计算传输时延和传播时延 | TIP/IP网络协议的核心是什么?| DNS域名系统的工作原理
本文详解了军队文职(计算机类)面试常见的真题。主要包括传输时延和传播时延的计算与分析,使用Python进行实际操作;TIP/IP网络协议的核心概念,包括IP协议和TCP协议的作用与工作原理;DBMS支持的数据模型,如关系模型、层次模型、对象模型等;以及SQL的四个组成部分(DDL、DML、DCL、TCL)的作用。同时,解析了DNS域名系统的工作原理,包括DNS解析过程和分布式架构的特点。通过阅读本文,各位能够初步了解这些关键的计算机网络和数据库知识。原创 2023-07-25 14:03:24 · 1551 阅读 · 0 评论 -
百度【文心千帆】AI大模型来啦!带你快速申请内测资格 + 第一视角亲身体验首发效果 | 距离真正的国际领先GPT,还有多远?
近两天看到“文心千帆”的发布消息,和多数朋友一样,我也是第一时间申请了文心千帆的内测资格并快速得到通过!走吧,跟随我的脚步,去看一看作为国产AI大模型之一的百度文心千帆的效果怎样,和文心一言相比,有了哪些进步?距离国际领先的GPT的脚步,我们还有多远?原创 2023-07-22 11:49:08 · 758 阅读 · 0 评论 -
【BUG解决与记录】The following nodes should be connected but aren‘t: | 网络工程师 面试:如何设计一个高可用的数据中心网络架构?
【BUG解决与记录】The following nodes should be connected but aren‘t: | 网络工程师 面试:如何设计一个高可用的数据中心网络架构?原创 2023-07-21 14:51:11 · 462 阅读 · 2 评论 -
系列文章之一文纵览【机器学习】(5) 常见评估方法:混淆矩阵、正确率、精确率、召回率、F值、预测概率、ROC曲线和AUC | 均方误差、决定系数、SVR | 超参数的设置 | 模型的过拟合与防止
机器学习中常见的评估方法有以下三种:[1] 留出法:将数据集划分为两个互斥集合S(训练集)和T(测试集),在S上训练出模型后,用T来评估测试误差,并将其作为泛化误差的估计。在划分数据时,应保持数据分布在训练集合测试集中的一致性(可使用分层抽样等方法),同时多次重复划分以获取更准确的结果。[2] 交叉验证法:将数据集划分为k个大小相似的互斥子集,进行k次模型评估。第i次(i=1,2,…,k)取第i份数据作为测试集,其余数据作为训练集。将k次模型评估的结果取平均,作为最终的模型评估结果。k与数据量相等时的k折交原创 2023-07-10 19:28:57 · 650 阅读 · 0 评论 -
【深度学习】教你 使用PyTorch 框架 构建神经网络 并 优化+可视化(附源代码):自制数据集 | 加载常见数据集 | 自制分类数据集 | 手动VS使用torch 实现线性模型
PyTorch是一个基于Torch的Python机器学习框架,它是由Facebook的人工智能研究小组在2016年开发的。PyTorch旨在解决深度学习中的一些问题,如计算图构建、自动求导和分布式训练等。PyTorch使用Python作为开发语言,具有动态计算图、易于扩展和调试等特点。PyTorch还提供了一些常用的工具包,如torch、torch.autograd、torch.utils、torch.multiprocessing等,这些工具包可以帮助开发人员更加方便地进行深度学习模型的训练和调试。原创 2023-07-07 08:47:16 · 1373 阅读 · 2 评论 -
【趣味Python】Python中的解析式,你了解吗?列表解析式(3种形式) | 字典解析式 | 集合解析式(含实例)
Python解析式有三种形式:列表解析式、集合解析式和字典解析式。Python解析式是一种灵活、精简而又高效的语法结构,使得处理和转换数据变得更加简单和便捷。本篇带大家快速了解Python中的三种解析式,希望对大家有所帮助!原创 2023-07-04 09:03:21 · 265 阅读 · 0 评论 -
深入浅出【GraphSAGE】原理:GCN、GAT都有哪些缺陷 | 深刻解析 邻居采样与聚合的完整过程 | 重采样和欠采样的由来 | Cora数据集的两个版本说明 | 详解Cora数据集
本篇,从GCN的固有缺陷讲起,直接指出GAT是怎样弥补GCN的不足;进而说明二者同时存在的问题,再引出本篇的主角——GraphSAGE。具体地,详细分析了该框架的两个主要步骤,即邻居采样与聚合,尽量用通俗易懂的语言讲解,让小白也能看的懂,学的会!相信总有一天,当你再次看到本篇对GraphSAGE框架原理的解析时,会有拍案叫绝的感觉!!原创 2023-06-30 15:58:51 · 292 阅读 · 0 评论