1034 有理数四则运算 (20 分)
本题要求编写程序,计算 2 个有理数的和、差、积、商。
输入格式:
输入在一行中按照 a1/b1 a2/b2 的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为 0。
输出格式:
分别在 4 行中按照 有理数1 运算符 有理数2 = 结果 的格式顺序输出 2 个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式 k a/b,其中 k 是整数部分,a/b 是最简分数部分;若为负数,则须加括号;若除法分母为 0,则输出 Inf。题目保证正确的输出中没有超过整型范围的整数。
输入样例 1:
2/3 -4/2
输出样例 1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例 2:
5/3 0/6
输出样例 2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf
思路:
gcd函数用来求最大公约数,func用来 化简分数,最后按格式输出即可。
参考代码:
#include <iostream>
#include <cmath>
using namespace std;
long long a, b, c, d;
long long gcd(long long t1, long long t2) {//求a,b最大公约数;
return t2 == 0 ? t1 : gcd(t2, t1 % t2);
}
void func(long long m, long long n) {//对m/n的分数进行化简
//除法时,如果除数为0,应当特判为零
if (m * n == 0) {
printf("%s", n == 0 ? "Inf" : "0");//分母0输出Inf,分子0输出0;
return ;
}
bool flag = ((m < 0 && n > 0) || (m > 0 && n < 0));//异号;
m = abs(m); n = abs(n);//绝对值;
long long x = m / n;//取整数部分;
printf("%s", flag ? "(-" : "");//异号输出(-,同号不输出;
if (x != 0) printf("%lld", x);
if (m % n == 0) {//判断后面还有没有小分数;
if(flag) printf(")");
return ;
}
if (x != 0) printf(" ");//有整数位,还有小分数要先输出一个空格;
m = m - x * n;//减去已经提取出来的整数部分;
long long t = gcd(m, n);//求最大公约数
m = m / t; n = n / t;//化简
printf("%lld/%lld%s", m, n, flag ? ")" : "");//如果flag==true还要在结尾输出);
}
int main() {
scanf("%lld/%lld %lld/%lld", &a, &b, &c, &d);
func(a, b); printf(" + "); func(c, d); printf(" = "); func(a * d + b * c, b * d); printf("\n");
func(a, b); printf(" - "); func(c, d); printf(" = "); func(a * d - b * c, b * d); printf("\n");
func(a, b); printf(" * "); func(c, d); printf(" = "); func(a * c, b * d); printf("\n");
func(a, b); printf(" / "); func(c, d); printf(" = "); func(a * d, b * c);
return 0;
}
点评:
①本题属于数学问题型,题意不难理解,就是情况比较多,处理起来比较麻烦。