Python入门之函数调用(二)

时间煮雨
@R星校长

第2关:函数正确调用 - 得到想要的结果

定义函数与调用函数的顺序

在定义了函数之后,就可以调用该函数了。但是在 Python 中我们要注意一个关键点,就是Python不允许前向引用,即在函数定义之前,不允许调用该函数。例如:

print plus(1,2)
def plus(a,b):
    return a+b

运行结果为:

NameError: name 'plus' is not defined

从报错结果可以看出,名字为plus的函数还没进行定义(虽然我们是在后面进行了定义)。所以当我们在调用函数时,一定要确定在调用之前进行了函数定义。

正确使用参数

我们要在调用函数时,需要正确调用函数的名称和参数,例如我们定义了一个加法函数:

def plus(a,b):
    return a+b

我们在调用plus()函数时,如果传入的参数类型不对,会报TypeError错误。而且有时我们传入的参数类型不是规定类型的话,就算调用函数运行结果没有报错,也会产生逻辑错误。例如:

# 定义plus函数,作用是求两个正整数之和
def plus(a,b):
    return a+b
# 调用plus函数,参数类型为'1','2'
print(plus('1','2'))

输出结果:

12

虽然上述例子的程序运行结果没有报错,但是结果却与我们的预期不符,因为我们的本意是调用plus()函数实现两个整数的加法。但是如果我们传入的是字符串类型的数值时,结果就是两个字符串的拼接。所以这个例子告诉我们一定要注意传入参数的类型。

当我们传入正常类型的参数时,传入的参数个数不一致时,也会报TypeError错误。例如:

# 定义plus函数,作用是求两个正整数之和
def plus(a,b):
    return a+b
# 调用plus函数,参数为1,2,3
print(plus(1,2,3))

报错:

TypeError: plus() takes 2 positional arguments but 3 were given

报错原因显示,因为plus()函数允许有且仅有2个参数,但是却在调用时传入了3个参数,所以程序报错。

# coding=utf-8

# 输入数字字符串,并转换为数值列表
a = input()
num1 = eval(a)
numbers = list(num1)

# 请在此添加代码,对数值列表numbers实现从小到大排序
########## Begin ##########

new_list=[]  #定义一个空列表
def get_min(numbers):
    #获取列表最小值
    a = min(numbers)
    #原列表删除最小值
    numbers.remove(a)
    #将最小值加入新列表
    new_list.append(a)
    #保证列报中有值,递归调用获取最小值,直到所有制获取完,并加入新列表返回新列表
    if len(numbers)>0:
        get_min(numbers)
    return new_list
new_list = get_min(numbers)
print(new_list)

########## End ##########

测试输入:

103,47,21,34,11,2,5,88,13
预期输出:

[2, 5, 11, 13, 21, 34, 47, 88, 103]
测试输入:

12,31,0,23,25,109,77,3
预期输出:

[0, 3, 12, 23, 25, 31, 77, 109]
测试输入:

6,4,11,34,12,1,4
预期输出:

[1, 4, 4, 6, 11, 12, 34]
测试输入:

5,4,3,2,1
预期输出:

[1, 2, 3, 4, 5]

保持对事业的努力,事业比幻想中的金钱要现实得多。这是必须牢记的原则。

在这里插入图片描述

在这里插入图片描述

【为什么学习数据挖掘】       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 【超实用的课程内容】      本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。 本课程分为三大部分: 基础知识篇:主要讲解数据挖掘这项技能的基本工作流程和介绍和入门必须的基本技能Python语言的入门,带领大家了解数据挖掘的常见操作和基础知识。 数据采集篇:学习如何解决数据挖掘的数据来源问题,读取各类型不同的数据包括CSV,excel,MySQL进行数据采集的交互。 数据探索篇:本篇主要解决数据的预处理保证数据的质量并用常见数据挖掘算法进行特征提取,分析数据背后隐含的信息。 【报名须知】 课程采取录播模式,课程永久有效,可无限次观看 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 【如何开始学习?】 PC端:报名成功后可以直接进入课程学习 移动端:下载CSDN学院或CSDN
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页