NumPy数组的高级操作(三)

时间煮雨
@R星校长

3关:花式索引与布尔索引

花式索引

花式索引(Fancy Indexing)是NumPy用来描述使用整型数组(这里的数组,可以是NumPy的数组,也可以是python自带的list)作为索引的术语,其意义是根据索引数组的值作为目标数组的某个轴的下标来取值。

使用一维整型数组作为索引,如果被索引数组(ndarray)是一维数组,那么索引的结果就是对应位置的元素;如果被索引数组(ndarray)是二维数组,那么就是对应下标的行。如下图所示:

在这里插入图片描述

示例代码如下:

import numpy as np


arr = np.array(['zero','one','two','three','four'])
'''
打印arr中索引为1和4的元素
结果为:['one', 'four']
'''
print(arr[[1,4]])

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
'''
打印arr中索引为1和0的行
结果为:[[4, 5, 6],
        [1, 2, 3]]
'''
print(arr[[1, 0]])

'''
打印arr中第2行第1列与第3行第2列的元素
结果为:[4, 8]
'''
print(arr[[1, 2], [0, 1]])

布尔索引

我们可以通过一个布尔数组来索引目标数组,以此找出与布尔数组中值为True的对应的目标数组中的数据,从而达到筛选出想要的数据的功能。如下图所示:(PS:需要注意的是,布尔数组的长度必须与被索引数组对应的轴的长度一致

在这里插入图片描述

不过单纯的传入布尔数组进去有点蠢,有没有更加优雅的方式使用布尔索引来达到筛选数据的效果呢?

当然有!我们可以想办法根据我们的需求,构造出布尔数组,然后再通过布尔索引来实现筛选数据的功能。

假设有公司员工绩效指数的数据如下(用一个一维的ndarray表示),现在想要把绩效指数大于3.5的筛选出来进行股权激励。

在这里插入图片描述

那首先就要构造出布尔数组,构造布尔数组很简单,performance > 3.5即可。此时会生成想要的布尔数组。

在这里插入图片描述
有了布尔数组就可以使用布尔索引来实现筛选数据的功能了。

在这里插入图片描述
示例代码如下:

import numpy as np


performance = np.array([3.25, 3.5, 3.75, 3.5, 3.25, 3.75])
'''
筛选出绩效高于3.5的数据
结果为:[3.75, 3.75]
'''
print(performance[performance > 3.5])

'''
筛选出绩效高于3.25并且低于4的数据
注意:&表示并且的意思,可以看成是and。&左右两边必须加上()
结果为:[3.5  3.75 3.5  3.75]
'''
print(performance[(performance > 3.25) & (performance < 4)])

编程要求

根据函数参数input_data过滤出所有的大写字母。

  • 具体要求请参见后续测试样例。

测试输入:

["d","a","A","p","b","I","C","K"]

预期输出:

['A' 'I' 'C' 'K']

开始你的任务吧,祝你成功!

import numpy as np


def student(input_data):
    result=[]
    #********* Begin *********#
    arr = np.array(input_data)
    result = arr[(arr >= 'A') & (arr <= 'Z')]
    # ********* End *********#
    return result

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页