梯度下降法与随机梯度下降法

  梯度下降法(Gradient Descent,GD)是机器学习中常见的一种迭代优化算法,它根据目标函数 f f f在某点 x i x_i xi的偏导数 ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif的正负决定“爬坡”或“下山”,最终迭代求得目标函数的极值(很多情况下是局部最优)。
  下面先介绍一下GD的算法框架:
  M表示样本数, α \alpha α表示迭代步长, 1 M ∑ i = 1 M f ( x i , θ 1 , . . . , θ s ) \frac{1}{M}\sum_{i=1}^Mf(x_i,\theta_1,...,\theta_s) M1i=1Mf(xi,θ1,...,θs)表示损失函数, x i x_i xi表示第 i i i个样本, θ i \theta_i θi表示损失函数第 i i i个参数, k k k表示迭代的轮次, ϵ \epsilon ϵ表示阈值。
1)初始化参数 θ i , i = 1 , . . . , s \theta_i,i=1,...,s θi,i=1,...,s
1)for i t e r iter iter in 1-k:   #迭代轮次
  2-1)for i i i in 1-M:  #迭代样本
    3)for j j j in 1-s:#迭代计算参数
      4-1)计算 f f f在样本 x i x_i xi时关于 θ j \theta_j^{} θj的梯度 ∂ f ( x i , θ 1 , . . . , θ s ) ∂ θ j \frac{\partial f(x_i,\theta_1,...,\theta_s)}{\partial \theta_j} θjf(xi,θ1,...,θs)
      4-2)用步长 α \alpha α乘上该梯度,得到当前位置下降的距离 α ∂ f ( x i , θ 1 , . . . , θ s ) ∂ θ j \alpha\frac{\partial f(x_i,\theta_1,...,\theta_s)}{\partial \theta_j} αθjf(xi,θ1,...,θs).
  2-2)for j j j in 1-s:  #迭代更新参数
    3-1) t e m p j = θ j temp_j=\theta_j tempj=θj
    3-2)更新参数 θ j \theta_j θj θ j = θ j − α 1 M ∑ i = 1 M ∂ f ( x i , θ 1 , . . . , θ s ) ∂ θ j \theta_j=\theta_j - \alpha\frac{1}{M}\sum_{i=1}^M\frac{\partial f(x_i,\theta_1,...,\theta_s)}{\partial \theta_j} θj=θjαM1i=1Mθjf(xi,θ1,...,θs)
    3-3)计算相邻轮次参数之差 d i f f e r j = θ j − t e m p j differ_j=\theta_j - temp_j differj=θjtempj.
  2-3)for i i i in 1-s:  #迭代比较参数
    3)if all d i f f e r j &lt; ϵ differ_j &lt; \epsilon differj<ϵ:  #比较相邻轮次参数之差
      4-1)输出参数 θ j , i = 1 , . . . , s \theta_j,i=1,...,s θj,i=1,...,s
      4-2)break.
在这里插入图片描述
从上面的分析可以看到,GD在每次迭代中都遍历了所有的样本,这在计算大规模数据优化问题式会带来很大的计算负担。这在实际操作中基本不可行,那该怎么办呢?
  为了解决该问题,就有了随机梯度下降法(Stochastic Gradient Descent,SGD)。不同于GD采用所有的样本训练参数 θ \theta θ,SGD只采用单个样本来训练参数,下面对比一下差别。
  在GD中,损失函数为 1 M ∑ i = 1 M f ( x i , θ 1 , . . . , θ s ) \frac{1}{M}\sum_{i=1}^Mf(x_i,\theta_1,...,\theta_s) M1i=1Mf(xi,θ1,...,θs),均方误差是
(1) Δ f ( θ 1 , . . . , θ s ) = 1 M ∑ i = 1 M Δ f ( x i , θ 1 , . . . , θ s ) \Delta f(\theta_1,...,\theta_s) =\frac{1}{M}\sum_{i=1}^M\Delta f(x_i,\theta_1,...,\theta_s) \tag{1} Δf(θ1,...,θs)=M1i=1MΔf(xi,θ1,...,θs)(1)
所以可以看出GD每次对参数进行更新时,需要遍历所有的训练样本。
  在SGD中,损失函数为 f ( x i , θ 1 , . . . , θ s ) f(x_i,\theta_1,...,\theta_s) f(xi,θ1,...,θs),均方误差是
(2) Δ f ( θ 1 , . . . , θ s ) = Δ f ( x i , θ 1 , . . . , θ s ) \Delta f(\theta_1,...,\theta_s) =\Delta f(x_i,\theta_1,...,\theta_s) \tag{2} Δf(θ1,...,θs)=Δf(xi,θ1,...,θs)(2)
SGD只用单个训练样本就能更新一次参数,这大大加快了训练速度。SGD是GD的简化,虽然速度快了,但是由于在选到不同的样本时结果会有差距,所以显然是不稳定的。为了让算法更加稳定,可以引入折中的方法,即选择m个样本来训练参数,这就是小批量随机梯度下降法(Mini_Batch Stochastic Gradient Descent,MBSGD)。
  在MBSGD中,损失函数为 1 m ∑ i = 1 m f ( x i , θ 1 , . . . , θ s ) \frac{1}{m}\sum_{i=1}^mf(x_i,\theta_1,...,\theta_s) m1i=1mf(xi,θ1,...,θs),均方误差是
(3) Δ f ( θ 1 , . . . , θ s ) = 1 m ∑ i = 1 m Δ f ( x i , θ 1 , . . . , θ s ) \Delta f(\theta_1,...,\theta_s) =\frac{1}{m}\sum_{i=1}^m\Delta f(x_i,\theta_1,...,\theta_s) \tag{3} Δf(θ1,...,θs)=m1i=1mΔf(xi,θ1,...,θs)(3)
MBSGD采用m个训练样本来更新一次参数,相对GD加快了速度,相对SGD增加了稳定性,是目前实际操作中经常采用的方法。其中参数   m , θ   ~m,\theta~  m,θ 是需要调参的。在采用MBSGD时,要注意这三个问题:
  1、样本数m的确定:这没有普世的答案,但通常会选择   m = 2 k ~m=2^k  m=2k,因为这样能充分利用矩阵运算操作;
  2、m个训练样本的选择:从M个训练样本中随机选择;
  3、迭代步长α的选取:考虑到收敛速度和求解精度,通常会采用“衰减取值”策略,即算法初期采用较大步长,当误差曲线逐渐平缓之后,这时候逐渐减小步长,直到找到满足条件的参数 θ \theta θ
注:实际例子可以参见博客 https://blog.csdn.net/kwame211/article/details/80364079

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值