AcWing 292. 炮兵阵地

该博客主要探讨了一种动态规划的解决方案,用于处理棋盘上放置炮兵的问题,确保炮兵之间不会相互攻击。代码实现中,定义了检查状态合法性的函数和计算炮兵数量的函数,并通过三层循环遍历所有可能的状态组合,找到最大数量的炮兵布局。最终,程序输出在给定条件下能放置的最大炮兵数。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
using namespace std;

const int N = 12,M =1<<N;
vector<int> state;
int f[2][M][M];
//已经摆完第i行,且第i行状态是j,第i-1行状态是k的炮兵最大数量(MAX)
int g[110],cnt[M];
int n,m;

bool check(int st)
{
    for(int i=0;i<m;i++)
    {
        if(((st>>i&1)&&(st>>i+1&1))||((st>>i&1)&&(st>>i+2&1)))
        return false;
    }
    return true;
}

int count(int st)
{
    int res=0;
    for(int i=0;i<m;i++)
    {
        res+=st>>i&1;
    }
    return res;
}

int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<m;j++)
        {
            char c;
            cin>>c;
            if(c=='H')g[i]+=1<<j;
        }
    }
    for(int i=0;i<1<<m;i++)
    {
        if(check(i))
        {
            state.push_back(i);
            cnt[i]=count(i);
        }
    }
    for(int i=1;i<=n+2;i++)
    {
        //第i行
        for(int j=0;j<state.size();j++)
        {
            //第i-1行
            for(int k=0;k<state.size();k++)
            {
                //第i-2行
                for(int u=0;u<state.size();u++)
                {
                    int a=state[j],b=state[k],c=state[u];
                    if((a&b)|(b&c)|(a&c))continue;
                    if(g[i]&a)continue;
                    f[i&1][j][k]=max(f[i&1][j][k],f[i-1&1][k][u]+cnt[a]);
                }
            }
        }
    }
    cout<<f[n+2&1][0][0];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值