图论学习笔记——可达矩阵

设有向图D = (V,E),顶点集V = {v1,v2,····,vn}。

定义矩阵

P = \left\{\begin{matrix} 0 \\ 1 \end{matrix}\right.(当vi到vj不可达时,p为0;当vi到vj可达时p为1.)

称矩阵P是图D的可达矩阵

一般地,设n阶有向图D的邻接矩阵为A,有A可得到图D的可达矩阵,不妨设为P,其步骤如下:

1、求出B_{}n= A + A^{}2 + ··· + A^{}n

2、把矩阵

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值