邻接矩阵、可达性矩阵、完全关联矩阵、可达性矩阵的计算

本文介绍了邻接矩阵、可达性矩阵以及完全关联矩阵的基本概念,强调了在无向图和有向图中,它们如何通过0和1来表示节点间的关系,包括起点终点的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

邻接矩阵:很简单,就是两个点有关系就是1,没有关系就是0

可达性矩阵:非常简单,两点之间有路为1,没有路为0

可发行矩阵的计算:有n个元素,初始可达性矩阵为A,那么最终的矩阵B=A^{1}+A^{2}+...+A^{n}

完全关联矩阵:描述点与边的关系,如果该点和该边有关系为1,没有关系就为0,非常简单

注意:对于无向图来说,只需要考虑边和点之间有没有关系,有关系即为1,没有关系即为0;但是对于有向图来说,点与边之间的关系还有起点和终点之分。起点为1,终点为-1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十5画生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值