我刷算法
1.青蛙爬楼梯问题:
描述: 1.青蛙上台阶,可以一下跳1步,也可以一下跳2步,n层台阶所有跳法?
问题分析: 假如说我要爬4阶台阶,青蛙只能走一阶或者两阶所以爬到第四阶就有两种可能: 1.跳一步到第四阶
2.跳两步到4阶.我们来考虑一下其他情况.当
n=0时没有台阶可以跳,n=1时只有一种可能 n=2时有两种可能.当n=3时f(n)=
f(n-1)+f(n-2)即f(n)的公式为:f(n-1)+f(n-2) n>2 , f(n)=1 n=1 ,f(n)=2 n=2所以我们看到这不就是我们以前学的斐波那契数列吗?用递归求解就可以了.
public int climbStairs(int n) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
} else if (n == 2) {
return 2;
} else {
return climbStairs(n - 1) + climbStairs(n - 2);
}
}
然后再想一下:我要知道四阶台阶的可能那我只需要知道3 和2 阶有多少种可能.我要知道5阶只需要知道4 和 3阶台阶的可能.
所以 d[n] = d[n-1] + d[n-2];
使用动态规划来解答此题.
public int climbStairs(int n) {
if (n < 3) {
return n;
}
int[] dp = new int[n];
dp[0] = 1;
dp[1] = 2;
for (int i = 2; i < n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n - 1];
}
问题转化:1.青蛙上台阶,可以一下跳1步,也可以一下跳2步…也可以跳n步,n层台阶所有跳法?
按照上面的思路分析:当跳到n阶台阶的情况:1.跳到n-1阶层然后再跳一层,跳到
n-2阶层然后再跳两层,跳到n-3层然后再跳三层.由此可以分析出递推公式:
f(n) = f(n-1)+f(n-2)+…f(2)+f(1)
f(n-1) = f(n-2)+f(n-3)+…f(2)+f(1)
两式做差得:
1-2得: f(n) = 2*(f-1);
public int climbStairs2(int n) {
if (n == 1) {
return 1;
} else {
return 2 * climbStairs(n - 1);
}
}
public int climbStairs3(int n) {
int d[] = new int[n];
d[0] = 1;
for (int i = 1; i < n; i++) {
d[i] = 2 * d[i - 1];
}
return d[n - 1];
}
=-------------------------------------------------------------------------------------------------=
括号生成
描述:数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
有效括号组合需满足:左括号必须以正确的顺序闭合。
1.必须当( 和 ) 都有时才能排序,如果都为0 就return
2.先遍历(当 (还有时继续遍历
3.再遍历 ) 注意 )受(的限制,例如n=3 ())这样是不行的必须保证( <) 数量,
如果 left >right return;
public List<String> parenthesesGenerates(int n){
List<String> list = new ArrayList< >();
if(n<1){
return list;
}
dfs("",n,n,list);
return list;
}
}
private void dfs(String str,int n,int n,List<String> list){
if(left==0 && right==0){
list.add(str);
}
if(left>right){
return 0;
}
if(left>0){
dfs(str+"(",left-1,right,list);
}
if(right>0){
dfs(str+")",left,right-1,list);
}
}