自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 服务器:FileNotFoundError: [Errno 2] No such file or directory:

例如有时候访问权重路径,直接点击文件,复制路径显示:autodl-tmp/compare/resnext/resnext_101_32x4d.pth。在autodl-tmp/compare/resnext/resnext_101_32x4d.pth前面加个root。但是将路径放进代码中显示文件不存在。

2024-05-22 21:49:25 321 1

原创 Multi-Interactive Dual-Decoder for RGB-Thermal Salient Object Detection

现有的方法没有充分挖掘和利用图像内容的不同模态和多类型线索的互补性潜力,而这对获得准确的结果至关重要。在本文中,我们提出了一种多交互双解码器,用于挖掘和建模精确的rgbtsod的多类型交互。然后,我们设计了一种新的双解码器来进行多层次特征、两种模态和全局上下文的相互作用。有了这些相互作用,我们的方法即使在无效模态存在的情况下也能很好地在各种具有挑战性的场景中工作。最后,我们在公开的RGBD和RGBD SOD数据集上进行了大量的实验,结果表明,本文提出的方法与目前最先进的算法相比取得了出色的性能。

2024-05-15 17:52:25 162

原创 基于语义匹配和边缘对齐的光学遥感图像轻量化显著目标检测

我们还提出了一种边缘自对齐模块(Edge Self-Alignment Module),用于底层特征的边缘对齐,即对从底层特征中提取的跨尺度边缘信息进行对齐,修正边缘误差,并用这些信息增强特征。具体来说,SeaNet包括一个用于特征提取的轻量级MobileNet-V2,一个用于高级特征的动态语义匹配模块(DSMM),一个用于低级特征的边缘自对齐模块(ESAM),以及一个用于推理的便携式解码器。首先,将高级特征压缩到语义核中。尽管如此,他们的策略启发了我们的方法,如经典的深度监督、边缘辅助和差分特征处理。

2024-05-15 15:52:52 720

原创 1.显著性目标检测(好的论文描述)

在流行的基准测试上进行的大量实验表明,所提出的SAMNet在GPU速度为343fps和CPU速度为5fps的情况下,对于只有1.33M参数的336×336输入,可以产生与最先进的方法相当的精度。我们提出了一种新的方法来寻找图像中的显著区域,利用颜色和亮度的低电平特征,该方法易于实现,耐噪,并且足够快,可用于实时应用。复杂结构在自然图像中普遍存在。一个地区的显著性主要取决于显著性地图应该是快速和容易生成的,以允许处理大型图像集合,并促进有效的图像分类和检索其与附近地区的对比,而与遥远地区的对比则不那么显著。

2024-05-14 22:04:28 1467 2

原创 ExFuse: Enhancing Feature Fusion for Semantic Segmentation

将高级特征与这种“纯粹的”低级特征融合在一起帮助不大,因为低级特征噪声太大,无法提供足够的高分辨率语义引导。相反,如果底层特征包含更多的语义信息,例如编码相对清晰的语义边界,那么融合就变得容易了{通过将高层特征映射对准边界可以获得精细的分割结果。同样,空间信息少的“纯”高级特征也不能充分利用低级特征;换句话说,可以通过在低级特征中引入更多的语义概念或在高级特征中嵌入更多的空间信息来增强特征融合。a)纯粹的“低水平高分辨率”和“纯粹的”高水平低分辨率特征难以融合,因为存在明显的语义和分辨率差距。

2024-05-11 14:56:22 240 1

原创 求助:输出图像不是黑白图片

图像mask图像模型输出图像稍作修改(将原来的tensor直接想加变为channel维度上面拼接)

2024-03-26 09:18:00 197

原创 关于在batch训练中频繁print打印信息导致cuda内存报错的可能性

个人以为是模型太大,导致cuda内存不够,但是模型能够运行很多个epoch,在中途运行中报错。通过减少这些操作,内存管理变得更高效,可能间接减少了 GPU 上的内存碎片化。(存储在 GPU 上)的值转换为 Python 的标量值(一个普通的数字),这个转换过程会把数据从 GPU 拷贝到 CPU。放在一个 epoch 结束后不直接减少 GPU 内存使用,但它减少了训练过程中的中断和开销,使得资源使用更加高效,可能间接影响到内存使用情况。存储的位置是 CPU 的内存,而不是 GPU 的内存。

2024-03-03 18:16:36 962

原创 解决由于cuda内存泄漏导致的中途cuda内存报错问题 torch.cuda.0utofMemoryError: CuDA out of memory.

2: 通常在模型评估或模型训练的特定时刻(如每个 epoch 后)调用此函数,而不是在每个训练步骤中调用。代码在每次迭代中都留下了未清理的数据,这些数据将累积并最终耗尽所有可用的 GPU 内存。在运行代码中,代码能够运行。1:这个操作只会释放 PyTorch 未使用的缓存内存,不会释放已经分配给张量的内存。目前我的问题已解决,但是你要和我犟,那就是你对,对对对!解决方法:减少batchsize的大小,尽可能的减少一批数据的加载。清理未引用的 CUDA 内存,以及确保及时删除不再需要的变量。

2024-03-02 23:06:37 1175

原创 _winapi.TerminateProcess(int(self._handle), TERMINATE)PermissionError: [WinError 5] 拒绝访问。

拒绝访问。表明您的程序试图终止一个进程,但是没有足够的权限来执行这个操作。在 Windows 系统中,WinError 5表示“拒绝访问”,这通常意味着当前用户没有足够的权限来终止指定的进程.

2024-03-02 15:47:11 536

原创 1:RuntimeError: CUDA error: an illegal memory access was encounteredCompile with TORCH_USE_CUDA_DSA`

报错显示不精确,按照软件推荐方法设置set TORCH_USE_CUDA_DSA=1,设置之后就会报错详细的问题,从而进行修改。

2024-03-02 15:36:43 3078

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除