(第一类)1.朴素二分
1.也就是正常的二分查找,例如:
#include <stdio.h>
int binary_search(int *arr, int n, int x){//*arr接受数组,n数组长度,x待查找数
int head = 0, tail = n - 1, mid;
while(head <= tail){
mid = (head + tail) >> 1;
if(arr[mid] == x)return mid;
if(arr[mid] < x) head = mid + 1;
else tail = mid - 1;
}
return -1;//未找到返回-1
}
int main(){
int n, arr[100] = {0};
scanf("%d", &n);
for(int i = 0; i < n; i++){
scanf("%d", arr + i);
}
int x;
scanf("%d", &x);
printf("%d\n", binary_search(arr, n, x));
return 0;
}
(第二类)2.特殊情况的二分(多看注释,都在注释里)
(1) 0001111找第一个1的位置(1:表示符合问题的答案,0:表示不符合问题的答案),也即:找第一个符合问题的答案
核心代码:
//不断去掉不存在答案的区间,当最后L与R相等的时候说明是答案
while(L != R) {
int mid = (L + R) / 2;
if(n[mid] == 0) { //此处n[mid] == 0表示他属于左边一堆0的情况
L = mid + 1;
} else { //更新右值时,不能减一,因为此时的R可能刚好就是那个1,减一可能会错过
R = mid;
}
}
return L;//此时L和R重合,同时指向答案
(2)1111000找最后一个1的位置(1:表示符合问题的答案,0:表示不符合问题的答案)也即:找最后一个符合问题的答案
核心代码:
while(L != R) {
int mid = (L + R + 1) / 2;//这里+1是为了避免死循环,因为除2后会下取整,可能导致L一直在最后一个1那,R一直在第一个0那
if(n[mid] != 0) {
L = mid;
} else {
R = mid - 1;
}
}
return L;
例题:
//这是00000011111111的问题,找第一个1
#include<iostream>
#include <algorithm>
#define max_n 100000
using namespace std;
struct node {
int num = 0, cnt = 0;//num:存放每一堆西瓜数量 cnt:这堆西瓜的编号
};
node x[max_n + 5];
bool cmp(const node &a, const node &b) {
return a.num < b.num;
}
int check(int mm, int t) { //t:带查找数,mm:查找的上边界
int l = 0, r = mm, mid = 0;
while(l != r) {
mid = (l + r) >> 1;
if(x[mid].num < t) l = mid + 1;
else r = mid;
}
return x[l].cnt;
}
int main() {
int n, m;
cin >> m >> n;
for(int i = 0; i < m; i++) {
cin >> x[i].num;
x[i].cnt = i + 1;
}
sort(x, x + m, cmp);
int temp = 0;
for(int i = 0; i < n; i++) {
cin >> temp;
cout << check(m, temp) << endl;
}
return 0;
}
(第三类)3.二分答案(结合题目理解,多看注释,都在注释里)
**解析:**所谓二分答案就是指看题中让求什么,那么就将这个要求的数据作为二分的对象,对其进行不断的二分,然后根据题中给定的限制条件不断更新左右指针 (l、r) ,这里的l和r是指向要求的数据的。一般题中会出现这样的字眼:求最大的值最小、或最小的值最大
//若切的最大长度比5小则切出来的段数会比8大,长度越小,段数越多。例如:
//切的长度:4,5,6,7
//对应的段数:9,8,6,5
//由上述案例:可知属于1110000类型
#include<iostream>
using namespace std;
int n, m, num[100005], lr = 0;//n:原木的数量 m:要切成的段数 lr:n根原木中最长的长度。此处体现了二分答案。即:要求的是最大长度,那么就二分原木长度,原木最短为1,最长为原木中最长的那根
int func(int len) {
int s = 0;
for(int i = 0; i < n; i++) {
s += num[i] / len;
}
return s;
}
int main() {
cin >> n >> m;
for(int i = 0; i < n; i++) {
cin >> num[i];
lr = max(lr, num[i]);
}
int l = 1, r = lr;//二分答案的区间为1 ~ lr
while(l != r) {
int mid = (l + r + 1) / 2;
int s = func(mid);//题中要求截出8段,func计算当原木长度为mid的时候能截几段
if(s >= m) {//通过截取的段数调整l r 的值
l = mid;
} else {
r = mid - 1;
}
}
cout << r << endl;
return 0;
}