Greedy Shopping
题目链接
题目开始给出一个非递增的序列,表示商品的价钱;
有两种操作:1 x y 对于每个 i 属于1~x a[i] = max(a[i], y);
2 x y 表示一个人买东西从x开始,有y块钱,碰到能买下的就买下,问能买几个。
啊这
这怎么做
取最大值的操作想到了吉老师线段树。于是比赛的时候就忽略了他是一个非递增序列。。。 虽然后来想起来了,可还是不会。
首先这个序列是递增的,对一个值取完最大值后他肯定还是递增的。
然后取最大值的操作:设第一个比y小的值在下标为k的地方,那么取最大值就是用这个值把k ~ x覆盖掉。二分找个k然后覆盖?。不用这样,可以在线段树里维护一个区间最大值、区间最小值。如果区间最小值比它大就不用覆盖,如果区间最大值比他小再覆盖。可这样怎么保证时间复杂度?,别忘了他一定是递增的,一个位置之后的一定会被覆盖。所以复杂度是logn。
查询操作:维护一个和,直接暴力找。。 然后如果这个区间的最小值大于钱数,直接返回0.
我好菜啊,这都不会
#include<stdio.h>
#include <algorithm>
#include <vector>
#include <string>
#include <math.h>
#include <queue>
#include <string.h>
#include <iostream>
#include <unordered_map>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<int,char> pic;
#define pb push_back
#define mkp make_pair
#define st first
#define sd second
// const ll INF = 0x3f3f3f3f3f3f3f;
const double esp = 1e-9;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f;
//!!!!!!!!!!!!!!!!!!!!!!!!
const int mod = 1e9+7;
const int maxn = 2e5 + 21;
int a[maxn];
struct Node
{
int l,r;
ll maxx,minn;
ll tag;
ll sum;
}node[maxn << 2];
void up(int no)
{
node[no].maxx = max(node[no<<1].maxx,node[no<<1|1].maxx);
node[no].minn = min(node[no<<1].minn,node[no<<1|1].minn);
node[no].sum = node[no<<1].sum + node[no<<1|1].sum;
}
void build(int l,int r,int no)
{
node[no].tag = 0;
node[no].l = l;
node[no].r = r;
if(l == r)
{
node[no].sum = node[no].maxx = node[no].minn = a[l];
return;
}
int mid = l + r >> 1;
build(l,mid,no<<1);
build(mid + 1,r,no<<1|1);
up(no);
}
void change(int no,int num)
{
node[no].maxx = node[no].minn = num;
node[no].tag = num;
node[no].sum = 1ll * (node[no].r - node[no].l + 1) * num;
}
void down(int no)
{
// printf("29380918230981904809\n");
change(no<<1,node[no].tag);
change(no<<1|1,node[no].tag);
node[no].tag =0 ;
}
void update(int l,int r,int no,int num)
{
if(node[no].l > r || node[no].r < l)
return;
if(node[no].minn >= num)
return;
if(node[no].l >= l && node[no].r <= r && node[no].maxx < num)
{
change(no,num);
// printf("%d %d %lld 231321\n",node[no].l,node[no].r,node[no].sum);
return;
}
if(node[no].tag)
down(no);
update(l,r,no<<1,num);
update(l,r,no<<1|1,num);
up(no);
//printf("%d %d %lld\n",node[no].l,node[no].r,node[no].sum);
}
int query(int l,int r,int no,int& num)
{
if(node[no].l > r || node[no].r < l)
return 0;
if(node[no].minn > num)
return 0;
if(node[no].l >= l && node[no].r <= r && node[no].sum <= num)
{
num -= node[no].sum;
// printf("%d %d %d %lld 111111\n",node[no].l,node[no].r,num,node[no].sum);
return node[no].r - node[no].l + 1;
}
if(node[no].tag)
down(no);
return query(l,r,no<<1,num) + query(l,r,no<<1|1,num);
}
int main()
{
int n, m;
scanf("%d%d",&n,&m);
for (int i= 1; i <= n; i ++ )
scanf("%d",&a[i]);
build(1,n,1);
while(m -- )
{
int f,x,y;
scanf("%d%d%d",&f,&x,&y);
if(f == 1)
update(1,x,1,y);
else
{
printf("%d\n",query(x,n,1,y));
}
}
}