CF Div.2 E - Greedy Shopping 线段树

Greedy Shopping

题目链接
题目开始给出一个非递增的序列,表示商品的价钱;
有两种操作:1 x y 对于每个 i 属于1~x a[i] = max(a[i], y);
2 x y 表示一个人买东西从x开始,有y块钱,碰到能买下的就买下,问能买几个。

啊这

这怎么做
取最大值的操作想到了吉老师线段树。于是比赛的时候就忽略了他是一个非递增序列。。。 虽然后来想起来了,可还是不会。
首先这个序列是递增的,对一个值取完最大值后他肯定还是递增的。
然后取最大值的操作:设第一个比y小的值在下标为k的地方,那么取最大值就是用这个值把k ~ x覆盖掉。二分找个k然后覆盖?。不用这样,可以在线段树里维护一个区间最大值、区间最小值。如果区间最小值比它大就不用覆盖,如果区间最大值比他小再覆盖。可这样怎么保证时间复杂度?,别忘了他一定是递增的,一个位置之后的一定会被覆盖。所以复杂度是logn。
查询操作:维护一个和,直接暴力找。。 然后如果这个区间的最小值大于钱数,直接返回0.
我好菜啊,这都不会

#include<stdio.h>
#include <algorithm>
#include <vector>
#include <string>
#include <math.h>
#include <queue>
#include <string.h>
#include <iostream>
#include <unordered_map>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<int,char> pic;
#define pb push_back
#define mkp make_pair
#define st first
#define sd second
// const ll INF = 0x3f3f3f3f3f3f3f;
const double esp = 1e-9;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f;
//!!!!!!!!!!!!!!!!!!!!!!!!
const int mod = 1e9+7;
const int maxn = 2e5 + 21;
int a[maxn];
struct Node
{
	int l,r;
	ll maxx,minn;
	ll tag;
	ll sum;
}node[maxn << 2];
void up(int no)
{
	node[no].maxx = max(node[no<<1].maxx,node[no<<1|1].maxx);
	node[no].minn = min(node[no<<1].minn,node[no<<1|1].minn);
	node[no].sum = node[no<<1].sum + node[no<<1|1].sum;
}
void build(int l,int r,int no)
{
	node[no].tag = 0;
	node[no].l = l;
	node[no].r = r;
	if(l == r)
	{
		node[no].sum = node[no].maxx = node[no].minn = a[l];
		return;
	}
	int mid = l + r >> 1;
	build(l,mid,no<<1);
	build(mid + 1,r,no<<1|1);
	up(no);
}
void change(int no,int num)
{
	node[no].maxx = node[no].minn = num;
	node[no].tag = num;
	node[no].sum = 1ll * (node[no].r - node[no].l + 1) * num;
}
void down(int no)
{
	// printf("29380918230981904809\n");
	change(no<<1,node[no].tag);
	change(no<<1|1,node[no].tag);
	node[no].tag =0 ;
}

void update(int l,int r,int no,int num)
{
	if(node[no].l > r || node[no].r < l)
		return;
	if(node[no].minn >= num)
		return;

	if(node[no].l >= l && node[no].r <= r && node[no].maxx < num)
	{
		change(no,num);
		// printf("%d %d %lld  231321\n",node[no].l,node[no].r,node[no].sum);
		return;
	}
	if(node[no].tag)
		down(no);
	update(l,r,no<<1,num);
	update(l,r,no<<1|1,num);
	up(no);
	//printf("%d %d %lld\n",node[no].l,node[no].r,node[no].sum);
}
int query(int l,int r,int no,int& num)
{
	if(node[no].l > r || node[no].r < l)
		return 0;
	if(node[no].minn > num)
		return 0;
	if(node[no].l >= l && node[no].r <= r && node[no].sum <= num)
	{
		num -= node[no].sum;
		// printf("%d %d %d %lld  111111\n",node[no].l,node[no].r,num,node[no].sum);
		return node[no].r - node[no].l + 1;
	}
	if(node[no].tag)
		down(no);
	return query(l,r,no<<1,num) + query(l,r,no<<1|1,num);
}

int main()
{
	int n, m;
	scanf("%d%d",&n,&m);
	for (int  i= 1; i <= n; i ++ )
		scanf("%d",&a[i]);
	build(1,n,1);
	while(m -- )
	{
		int f,x,y;
		scanf("%d%d%d",&f,&x,&y);
		if(f == 1)
			update(1,x,1,y);
		else
		{
			printf("%d\n",query(x,n,1,y));
		}
	}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值