数字图像处理学习笔记5:频率域滤波1(傅里叶频谱图,低通滤波-平滑,高通滤波-锐化)

本文介绍了频率域滤波的基本概念及实现方法,包括傅里叶变换的理解与应用、低通滤波与高通滤波的不同类型及其MATLAB实现。通过对比分析理想、布特沃斯与高斯滤波器的效果,帮助读者掌握频率域滤波的关键技术。


前言

频率域滤波步骤:

在这里插入图片描述
频率域滤波分为低通滤波(平滑)与高通滤波(锐化):
低 通 滤 波 = { 理 想 低 通 滤 波 布 特 沃 斯 低 通 滤 波 高 斯 低 通 滤 波 低通滤波 = \begin{cases} 理想低通滤波 \\ 布特沃斯低通滤波\\ 高斯低通滤波 \end{cases} =
高 通 滤 波 = { 理 想 高 通 滤 波 布 特 沃 斯 高 通 滤 波 高 斯 高 通 滤 波 高通滤波 = \begin{cases} 理想高通滤波 \\ 布特沃斯高通滤波\\ 高斯高通滤波 \end{cases} =


一、傅里叶变换:傅里叶频谱图

使用下列代码得到图像的频谱图

I=imread('1.jpg');
I=rgb2gray(I);
figure
imshow(I)
I=im2double(I);
F=fft2(I);
F=fftshift(F);
F=abs(F);
T=log(F+1);
figure
imshow(T,[]);

结果:
在这里插入图片描述若仅使用频谱图来进行简单滤波,只需要了解频谱图中心为0频分量,越接近边缘则是高频分量,其中高频分量代表图像中灰度变化较大的信息,如噪声和细节,低频则相反。


比如对上图加入椒盐噪声,得到:
在这里插入图片描述与上面的频谱图比较,发现频谱图外层的亮点明显增多,因为增加了椒盐噪声,高频分量变多。

使用频谱图进行滤波,就是在频谱图中减去低频或高频分量。


二、低通滤波

低 通 滤 波 = { 理 想 低 通 滤 波 布 特 沃 斯 低 通 滤 波 高 斯 低 通 滤 波 低通滤波 = \begin{cases} 理想低通滤波 \\ 布特沃斯低通滤波\\ 高斯低通滤波 \end{cases} =


1.理想低通滤波

理想低通滤波是在频谱图中,以0频分量(中心点)为圆心,以r为半径作的圆中,使圆外的所有高频分量置零,即只保留圆内的低频分量,以此去除噪声。

理想低通滤波器函数为:
H ( u , v ) = { 1 , D< D 0 0 , D> D 0 H(u,v) = \begin{cases} 1 , & \text{D<$D_0$}\\ 0 , & \text{D>$D_0$}\\ \end{cases} H(u,v)={ 1,0,D<D

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

‭刘燚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值