文章目录
前言
频率域滤波步骤:

频率域滤波分为低通滤波(平滑)与高通滤波(锐化):
低 通 滤 波 = { 理 想 低 通 滤 波 布 特 沃 斯 低 通 滤 波 高 斯 低 通 滤 波 低通滤波 = \begin{cases} 理想低通滤波 \\ 布特沃斯低通滤波\\ 高斯低通滤波 \end{cases} 低通滤波=⎩⎪⎨⎪⎧理想低通滤波布特沃斯低通滤波高斯低通滤波
高 通 滤 波 = { 理 想 高 通 滤 波 布 特 沃 斯 高 通 滤 波 高 斯 高 通 滤 波 高通滤波 = \begin{cases} 理想高通滤波 \\ 布特沃斯高通滤波\\ 高斯高通滤波 \end{cases} 高通滤波=⎩⎪⎨⎪⎧理想高通滤波布特沃斯高通滤波高斯高通滤波
一、傅里叶变换:傅里叶频谱图
使用下列代码得到图像的频谱图
I=imread('1.jpg');
I=rgb2gray(I);
figure
imshow(I)
I=im2double(I);
F=fft2(I);
F=fftshift(F);
F=abs(F);
T=log(F+1);
figure
imshow(T,[]);
结果:
若仅使用频谱图来进行简单滤波,只需要了解频谱图中心为0频分量,越接近边缘则是高频分量,其中高频分量代表图像中灰度变化较大的信息,如噪声和细节,低频则相反。
比如对上图加入椒盐噪声,得到:
与上面的频谱图比较,发现频谱图外层的亮点明显增多,因为增加了椒盐噪声,高频分量变多。
使用频谱图进行滤波,就是在频谱图中减去低频或高频分量。
二、低通滤波
低 通 滤 波 = { 理 想 低 通 滤 波 布 特 沃 斯 低 通 滤 波 高 斯 低 通 滤 波 低通滤波 = \begin{cases} 理想低通滤波 \\ 布特沃斯低通滤波\\ 高斯低通滤波 \end{cases} 低通滤波=⎩⎪⎨⎪⎧理想低通滤波布特沃斯低通滤波高斯低通滤波
1.理想低通滤波
理想低通滤波是在频谱图中,以0频分量(中心点)为圆心,以r为半径作的圆中,使圆外的所有高频分量置零,即只保留圆内的低频分量,以此去除噪声。
理想低通滤波器函数为:
H ( u , v ) = { 1 , D< D 0 0 , D> D 0 H(u,v) = \begin{cases} 1 , & \text{D<$D_0$}\\ 0 , & \text{D>$D_0$}\\ \end{cases} H(u,v)={
1,0,D<D

本文介绍了频率域滤波的基本概念及实现方法,包括傅里叶变换的理解与应用、低通滤波与高通滤波的不同类型及其MATLAB实现。通过对比分析理想、布特沃斯与高斯滤波器的效果,帮助读者掌握频率域滤波的关键技术。
最低0.47元/天 解锁文章
4196

被折叠的 条评论
为什么被折叠?



