平衡搜索树AVL 插入操作及旋转分析

AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下(O(N))。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 且它的左右子树也都是AVL树

在这里插入图片描述
平衡因子 = 右子树高度 - 左子树高度
上图树中的所有节点的平衡因子: 1/ -1/ 0,即满足左右子树高度差绝对值不超过1,即称该树是平衡的。

AVL树的性质:
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在logn,搜索时间复杂度O(logN )。

AVL树节点的定义

为了方便实现,每个节点引入bf平衡因子 =右子树高度 - 左子树的高度
父节点指针用来判断插入之后是否旋转及旋转之后维护平衡因子的。


template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//平衡因子
	pair<int, int> _kv;//键值对 类型的元素

	//构造函数
	AVLTreeNode(const pair<K,V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{ }
};

AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 先按照二叉搜索树的规则将节点插入到AVL树中
  2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
//1.按照排序树的规则,找到插入位置
		if (_root == nullptr)//一开始为空时
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}
		
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false; //之前有过,要是不允许重复,则插入失败
			}
		}
		//2.找到插入位置后,进行插入
		cur = new Node(kv);
		if (parent->_kv.first < kv.first) //挂载到右子树上
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else //挂载到左子树
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

注意:每个节点插入之前,当前树必定是平衡树,即:其父亲节点的平衡因子分为三种情况:-1,0, 1,而再根据插入的位置,更新其平衡因子,也分以下两种情况:

  1. 如果插入到父节点的左侧,只需给父节点的平衡因子-1即可;
  2. 如果插入到父节点的右侧,只需给父节点的平衡因子+1即可;
//更新父节点平衡因子
			if (cur == parent->_left)//挂到其左边的,因子减一
				parent->_bf--;
			else  if(cur == parent->_right)   //挂到右边,因子加一
				parent->_bf++;

如何根据平衡因子维护平衡

新插入的节点,影响的是新插入节点的祖先的平衡因子(即需要自下而上更新)。此时:其父节点的平衡因子可能有三种情况:0,正负1, 正负2

  • a.如果父节点的平衡因子为0,说明插入之前父节点的平衡因子为正负1,插入后被调整成0,对上一层没有影响,此时满足AVL树的性质,插入成功;
  • b.如果父节点的平衡因子为正负1,说明插入父节点的平衡因子一定为0,插入后被更新成正负1,此时以此父节点为根的树的高度增加,需要继续向上更新
  • c.如果父节点的平衡因子更新完成后变成正负2,则说明以此父节点为根的树已经不平衡,那么需要旋转处理让他平衡。
while (parent)
		{
			//更新平衡因子
			if (cur == parent->_left)//挂到其左边的,因子减一
				parent->_bf--;
			else  if(cur == parent->_right)   //挂到右边,因子加一
				parent->_bf++;
			//判断是否需要需要旋转 对应三种情况
			if (parent->_bf == 0)//上层已经是平衡了的
				break;
			else if (abs(parent->_bf)==1)
			{
				cur = parent;
				parent = parent->_parent;//继续向上更新
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 说明parent子树已经不平衡,需要旋转处理,让其平衡
				if (parent->_bf == 2)
				{
					if (cur->_bf == 1)//此情况需进行左单旋
						RotateL(parent);
					else if (cur->_bf == -1)//先右旋再左旋
						RotateRL(parent);
				}
				else if (parent->_bf == -2)
				{
					if (cur->_bf == -1)
					{
						RotateR(parent);//右单旋
					}
					else if (cur->_bf == 1)
					{
						RotateLR(parent);//先左旋再右旋
					}
				}
				//处理完毕后 break;
				break;
			}

AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。
旋转规则:
1、让这颗不平衡的树恢复平衡。
2、使这棵树高度降1,恢复到插入之前时的高度。不会对上层造成影响,停止更新。
3、且保持住搜索树的规则。

根据节点插入位置的不同,AVL树的旋转分为四种

右单旋

新节点插入到较高左子树的左侧(即本身此树(60为根)的左子树高度便高于右子树,再在其左子树的左侧插入新节点)--------》左左:使用右单旋,维持平衡。如:
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子(抽象图里的左子树))中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,
即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。在旋转过程中,有以下几种细节情况需要考虑:
–30节点的右孩子可能存在,也可能不存在
–60可能是根节点,也可能是子树
如果是根节点,旋转完成后,要更新根节点
如果是子树,可能是某个节点的左子树,也可能是右子树(需要链接起来)

在这里插入图片描述
最后平衡因子的更新:subL->_bf = parent->_bf = 0;

void RotateR(Node* parent) //右单旋 
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* pparent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
				pparent->_left = subL;
			else
				pparent->_right = subL;
			subL->_parent = pparent;
		}
		subL->_bf = parent->_bf = 0;
	}

左单旋

新节点插入到较高右子树的右侧(即本身此树(60为根)的右子树高度便高于左子树,再在其右子树的右侧插入新节点)--------》右右:使用左单旋,维持平衡。如:
在这里插入图片描述
与右单旋的旋转处理都是一样的,主要是将其高度降一,在考虑节点间的链接情况:

在这里插入图片描述
最后平衡因子的更新:subL->_bf = parent->_bf = 0;

void RotateL(Node* parent) //左单旋
	{
		Node* subR = parent->_right;  //旋转需要的子树节点
		Node* subRL = subR->_left;

		//旋转 及 链接旋转之后节点之间的关系
		parent->_right = subRL;
		if (subRL) //可能为空的
			subRL->_parent = parent;
		subR->_left = parent;
		Node* pparent = parent->_parent;//这棵树也可能是其他树的子树,保存其祖先,准备判断
		parent->_parent = subR;

		if (parent == _root) //不是子树,本身就是根,则更新为新的根节点
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else          //是其他树的子树,则链接上
		{
			if (pparent->_left == parent)
				pparent->_left = subR;
			else if (pparent->_right == parent)
				pparent->_right = subR;
			subR->_parent = pparent;
		}
		//更新平衡因子
		subR->_bf = parent->_bf = 0;
	}

双旋:先左单旋再右单旋

新节点插入较高左子树的右侧(以90为根的左子树本身就高于其右子树,再在其左子树的右侧插入节点(不论右侧的左还是右),则需将其左子树先左单旋,再将其右单旋)
-------》左右:先左单旋再右单旋
在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

void RotateLR(Node* parent)//左右双旋,先对其左子树左旋,再对其右旋   ,但是要注意平衡因子的调整
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;  //根据插入节点的父节点的平衡因子来判断
        //旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
        
		RotateL(subL);
		RotateR(parent);
		//旋转后调节平衡因子
		if (bf == 1)  //选择在其右边插入
		{
			parent->_bf = 0;
			subL->_bf = - 1;
			subLR->_bf = 0;
		}
		else if (bf == -1)//选择在其左边插入  对应上图例子
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0) //选择插入到高度低的那一边后,自己是平衡的,则双旋后,都是平衡的了
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
	}

双旋之先右单旋再左单旋

新节点插入较高右子树的左侧(以30为根的右子树本身就高于其左子树子树,再在其右子树的左侧插入节点(不论左侧的左还是右),则需将其右子树先右单旋,再将其左单旋)
-------》右左:先右单旋再左单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对90进行右单旋,然后再对30进行左单旋,旋转完成后再考虑平衡因子的更新。

void RotateRL(Node* parent)//右左双旋,先对其右子树右旋,在对其左旋
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);
		
		if (bf == 1)  //对应上图例子
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
	}

旋转总结:
假如以parent为根的子树不平衡,即Parent的平衡因子为2或者-2,分以下情况考虑:

  1. Parent的平衡因子为2,说明Parent的右子树高,设Parent的右子树的根为SubR
    当SubR的平衡因子为1时,执行左单旋
    当SubR的平衡因子为-1时,执行右左双旋
  2. Parent的平衡因子为-2,说明Parent的左子树高,设Parent的左子树的根为SubL
    当SubL的平衡因子为-1是,执行右单旋
    当SubL的平衡因子为1时,执行左右双旋

旋转完成后,原Parent为根的子树个高度降低,已经平衡,不需要再向上更新。

else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 说明parent子树已经不平衡,需要旋转处理,让其平衡
				if (parent->_bf == 2)
				{
					if (cur->_bf == 1)//此情况需进行左单旋
						RotateL(parent);
					else if (cur->_bf == -1)//先右旋再左旋
						RotateRL(parent);
				}
				else if (parent->_bf == -2)
				{
					if (cur->_bf == -1)
					{
						RotateR(parent);//右单旋
					}
					else if (cur->_bf == 1)
					{
						RotateLR(parent);//先左旋再右旋
					}
				}
				//处理完毕后 break;
				break;

AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    每个节点子树高度差的绝对值不超过1(有些AVL树的结构节点中并没有引入平衡因子,所以使用递归求高度来验证),进而来判断节点的平衡因子是否计算正确。
void _InOrder(Node* root)//中序遍历
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	int Height(Node* root)//求最大子树高度
	{
		if (root == nullptr)
			return 0;

		int lefeHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		return lefeHeight > rightHeight ? lefeHeight + 1 : rightHeight + 1;
	}

	bool _IsBalance(Node* root)//判断是否平衡,即左右子树高度差不超过1,及其左右子树也满足,即为平衡
	{
		if (root == nullptr)
			return true;

		int lefeHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		int diff = lefeHeight - rightHeight;//当前树的平衡因子

		// 如果计算出的平衡因子与root的平衡因子不相等,或者
		// root平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != root->_bf || (diff > 1 || diff < -1))
		{
			cout << "平衡因子不匹配!" << endl;
			return false;
		}	 
		return  _IsBalance(root->_left) && _IsBalance(root->_right);
	}
	bool IsBalance()
	{
		return _IsBalance(_root);
	}

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度O(logN),即。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:
插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时(删除与插入类似,也会旋转),有可能一直要让旋转持续到根的位置结构会被完全打乱。
因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不需要删除),可以考虑AVL树,但一个结构经常修改,就不太适合。

完整代码

#pragma once
#include<assert.h>


template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf;//平衡因子
	pair<int, int> _kv;//键值对 类型的元素

	//构造函数
	AVLTreeNode(const pair<K,V>& kv)
		: _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{ }
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<const K,V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		//1.按照排序树的规则,找到插入位置
		if (_root == nullptr)//一开始为空时
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}
		
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false; //之前有过
			}
		}
		//2.找到插入位置后,进行插入
		cur = new Node(kv);
		if (parent->_kv.first < kv.first) //挂载到右子树上
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else //挂载到左子树
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		//3.为了保持平衡,根据平衡因子判断是否需要旋转,且更新平衡因子  平衡因子= 右子树高度-左子树高度
		///新插入的节点,影响的是新插入节点的祖先的平衡因子
			/a.右子树的高度变化,则父亲的平衡因子 + 1, 左子树的高度变化,则父亲的平衡因子 - 1
			/b.父亲的平衡囚子电新完成后变成1/ -l,则说明父亲所在的子树的高度变了,则继续往上更新。
			c.父亲的平衡因子更新完成后变成2 / 2, 则说明父亲所在的子树已经不平衡,那么需要旋转处理让他平衡。
			d.父亲的平衡因子更新完成后变成0,则说明父亲所在的子树的高度没变,对上一层没有影响,则更新完成。

		while (parent)
		{
			//更新平衡因子
			if (cur == parent->_left)//挂到其左边的,因子减一
				parent->_bf--;
			else  if(cur == parent->_right)   //挂到右边,因子加一
				parent->_bf++;
			//判断是否需要需要旋转 对应三种情况
			if (parent->_bf == 0)//上层已经是平衡了的
				break;
			else if (abs(parent->_bf)==1)
			{
				cur = parent;
				parent = parent->_parent;//继续向上更新
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 说明parent子树已经不平衡,需要旋转处理,让其平衡
				if (parent->_bf == 2)
				{
					if (cur->_bf == 1)//此情况需进行左单旋
						RotateL(parent);
					else if (cur->_bf == -1)//先右旋再左旋
						RotateRL(parent);
				}
				else if (parent->_bf == -2)
				{
					if (cur->_bf == -1)
					{
						RotateR(parent);//右单旋
					}
					else if (cur->_bf == 1)
					{
						RotateLR(parent);//先左旋再右旋
					}
				}
				//处理完毕后 break;
				break;
			}
		}
		return true;
	}
	void RotateL(Node* parent) //左旋
	{
		Node* subR = parent->_right;  //旋转需要的子树
		Node* subRL = subR->_left;

		//旋转 及 链接旋转之后节点之间的关系
		parent->_right = subRL;
		if (subRL) //可能为空的
			subRL->_parent = parent;
		subR->_left = parent;
		Node* pparent = parent->_parent;//这棵树也可能是其他树的子树,保存其祖先,准备判断
		parent->_parent = subR;

		if (parent == _root) //不是子树,本身就是根,则更新为新的根节点
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else          //是其他树的子树,则链接上
		{
			if (pparent->_left == parent)
				pparent->_left = subR;
			else if (pparent->_right == parent)
				pparent->_right = subR;
			subR->_parent = pparent;
		}
		//更新平衡因子
		subR->_bf = parent->_bf = 0;
	}
	void RotateR(Node* parent) //右单旋 
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;
		Node* pparent = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (pparent->_left == parent)
				pparent->_left = subL;
			else
				pparent->_right = subL;
			subL->_parent = pparent;
		}
		subL->_bf = parent->_bf = 0;
	}
	void RotateLR(Node* parent)//左右双旋,先对其左子树左旋,再对其右旋   ,但是要注意平衡因子的调整
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;  //根据插入节点的父节点的平衡因子来判断

		RotateL(subL);
		RotateR(parent);
		//旋转后调节平衡因子
		if (bf == 1)  //本来是平衡的,来插入到右边
		{
			parent->_bf = 0;
			subL->_bf = - 1;
			subLR->_bf = 0;
		}
		else if (bf == -1)//本来是平衡的,来插入到左边
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 0)//插入到高度低的那一边后,自己是平衡的,则双旋后,都是平衡的了
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
	}
	void RotateRL(Node* parent)//右左双旋,先对其右子树右旋,在对其左旋
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(subR);
		RotateL(parent);
		
		if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_root);
	}

	int Height(Node* root)//求最大子树高度
	{
		if (root == nullptr)
			return 0;

		int lefeHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		return lefeHeight > rightHeight ? lefeHeight + 1 : rightHeight + 1;
	}

	bool _IsBalance(Node* root)//判断是否平衡,即左右子树高度差不超过1,及其左右子树也满足,即为平衡
	{
		if (root == nullptr)
			return true;

		int lefeHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		int diff = lefeHeight - rightHeight;//当前树的平衡因子

		// 如果计算出的平衡因子与root的平衡因子不相等,或者
		// root平衡因子的绝对值超过1,则一定不是AVL树
		if (diff != root->_bf || (diff > 1 || diff < -1))
		{
			cout << "平衡因子不匹配!" << endl;
			return false;
		}	 
		return  _IsBalance(root->_left) && _IsBalance(root->_right);
	}

	bool IsBalance()
	{
		return _IsBalance(_root);
	}
private:
	Node* _root = nullptr;
};




测试


#include<iostream>
#include<vector>
#include<time.h>
using namespace std;

#include "AVLTree.h"


void TestAVLTree1()
{
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
		//cout << t.IsBalance() << endl;
	}
	t.InOrder();
	cout << t.IsBalance() << endl;
}
void TestAVLTree2()
{
	AVLTree<int, int> avl;
	vector<int> v;
	int n = 100000;
	srand(time(0));
	for (int i = 0; i < n; i++)
	{
		v.push_back(rand());
	}
	for (auto e : v)
	{
		avl.Insert({ e, e });
	}
	//avl.InOrder();
	cout << avl.IsBalance() << endl;
}
int main()
{
	TestAVLTree2();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值