c++ 动态时间规整算法(DTW)例子

#include<iostream>
#include<string.h>
using namespace std;
#define NUM1 6       //序列中样本点的个数简单起见,假设2个序列的样本点一样多
#define NUM2 7
#define max 999
#define Min(a,b) (a<b?a:b)

int main()
{
	int i,j,k;
	//int a[NUM1],b[NUM2];

	int b[6]={2,0,0,8,7,2};
	int a[5]={1,3,3,8,1};
	
	int distance[NUM1+1][NUM2+1];
	int output[NUM1+1][NUM2+1];
	
	memset(distance,0,sizeof(distance));
	memset(output,0,sizeof(output));
	for(i=0;i<=NUM1;i++)
	{
		for(j=0;j<=NUM2;j++)
		{
			distance[i][j]=max;
			output[i][j]=max;
		}
	}
	distance[0][0]=0;
	output[0][0]=0;
	
	//for(i=0;i<NUM1;i++)  cin>>a[i];
	//for(i=0;i<NUM2;i++)  cin>>b[i];
	
	for(i=1;i<=NUM1;i++)
		for(j=1;j<=NUM2;j++)
			distance[i][j]=abs(b[j-1]-a[i-1]);    //计算点与点之间的欧式距离
		
		for(i=1;i<NUM1;i++)
		{
			for(j=1;j<NUM2;j++)
				cout<<distance[i][j]<<'\t';
			cout<<endl;
		} //输出整个欧式距离的矩阵
		cout<<endl;
		
		
		for(i=1;i<NUM1;i++)
			for(j=1;j<NUM2;j++)	
				output[i][j]=Min ( Min(output[i-1][j-1],output[i][j-1]) ,output[i-1][j] )+distance[i][j];
			//DP过程,计算DTW距离
			
			for(i=1;i<NUM1;i++)
			{
				for(j=1;j<NUM2;j++)
					cout<<output[i][j]<<'\t';
				cout<<endl;
			} //输出最后的DTW距离矩阵,其中output[NUM][NUM]为最终的DTW距离和
			
			return 0;
}

在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。 这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和。 还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应 ,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。 接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i] [j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i] [j];最后得到的output[5][5]就是我们所需要的DTW距离.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌新待开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值