码农常用10种算法

码农常用10种算法

二分查找算法(非递归)

查看前面笔记:查找算法中的非递归二分查找

分治算法

分治算法介绍
分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

分治算法可以求解的一些经典问题

  • 二分搜索
  • 大整数乘法
  • 棋盘覆盖
  • 合并排序
  • 快速排序
  • 线性时间选择
  • 最接近点对问题
  • 循环赛日程表
  • 汉诺塔

分治算法的基本步骤

分治法在每一层递归上都有三个步骤:

  1. 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  2. 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  3. 合并:将各个子问题的解合并为原问题的解。

分治(Divide-and-Conquer§)算法设计模式如下:
在这里插入图片描述

说明:其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC§是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC§求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解

分治算法最佳实践-汉诺塔

汉诺塔的传说
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子中从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

在这里插入图片描述
汉诺塔游戏的演示和思路分析:

如果是有一个盘, A->C
如果有 n >= 2 情况,则总是可以看做是两个盘 1.最下边的盘 2. 上面的所有盘

  • 先把 最上面的盘 A->B
  • 再把最下边的盘 A->C
  • 最后把B塔的所有盘 从 B->C

代码实现

package com.atguigu.dac;

/**
 * @author ysxstart
 * @create 2022-04-24 13:18
 */
public class HanoiTower {

    /**
     * 汉诺塔的移动的方法,使用分治算法
     *
     * @param num 盘的个数
     * @param a   第一根柱子
     * @param b   第二根柱子
     * @param c   第三根柱子
     */
    public static void hanoiTower(int num, char a, char b, char c) {
        //如果只有 1个盘
        if (num == 1) {
            System.out.println("第1个盘从" + a + "->" + c);
        } else {
            //如果有 num >= 2情况,则总是可以看做是两个盘: 1.最下边的一个盘 2. 上面的所有盘
            //1.先把最上面的所有盘 a->b, 移动过程会使用到 c
            hanoiTower(num - 1, a, c, b);
            //2.把最下边的盘 a->c
            System.out.println("第" + num + "个盘从" + a + "->" + c);
            //3.把 b塔的所有盘从 b->c , 移动过程使用到 a塔
            hanoiTower(num - 1, b, a, c);
        }
    }

    public static void main(String[] args) {
        hanoiTower(3, 'A', 'B', 'C');
    }
}

动态规划算法

动态规划算法介绍

  • 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
  • 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
  • 与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
  • 动态规划可以通过填表的方式来逐步推进,得到最优解.

动态规划算法最佳实践-背包问题

背包问题:有一个背包,容量为4磅 , 现有如下物品
在这里插入图片描述

  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不能重复

背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。

思路分析:

算法的主要思想,利用动态规划来解决。每次遍历到的第i个物品,根据w[i]和val[i]来确定是否需要将该物品放入背包中。即对于给定的n个物品,设val[i]、w[i]分别为第i个物品的价值和重量,C为背包的容量。再令v[i][j]表示前i个物品中能够装入容量为j的背包中的最大价值。则有下面的结果:

  1. v[i][0]=val[0][j]=0; //表示填入表第一行和第一列是0
  2. 当w[i]> j 时:v[i][j]=v[i-1][j] //当准备加入新增的商品的容量大于当前背包的容量时,就直接使用上一个单元格的装入策略
  3. 当j>=w[i]时: v[i][j]=max{v[i-1][j], val[i]+v[i-1][j-w[i]]} //当准备加入的新增的商品的容量小于等于当前背包的容量,装入的方式:
    1. v[i-1][j]: 就是上一个单元格的装入的最大值
    2. val[i] : 表示当前商品的价值
    3. v[i-1][j-w[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值。当j>=w[i]时: v[i][j]=max{v[i-1][j], val[i]+v[i-1][j-w[i]]}

在这里插入图片描述

代码实现:

package com.atguigu.dynamicprogramming;

/**
 * @author ysxstart
 * @create 2022-04-24 16:43
 */
public class KnapsackProblem {

    public static void main(String[] args) {

        int[] w = {1, 4, 3}; //物品的重量
        int[] val = {1500, 3000, 2000}; //物品的价值
        int m = 4; //背包的容量
        int n = val.length; //物品的个数

        //创建二维数组
        //v[i][j] 表示在前 i个物品中能够装入容量为j的背包中的最大价值
        int[][] v = new int[n + 1][m + 1];
        //为了记录放入商品的情况,定一个二维数组
        int[][] path = new int[n + 1][m + 1];

        //初始化第一行和第一列, 这里可以不去处理,因为默认就是0
        for (int i = 0; i < v.length; i++) {
            v[i][0] = 0; //将第一列设置为0
        }
        for (int i = 0; i < v[0].length; i++) {
            v[0][i] = 0; //将第一行设置0
        }

        //根据前面得到公式来动态规划处理
        for (int i = 1; i < v.length; i++) {
            for (int j = 1; j < v[0].length; j++) {
                //公式
                if (w[i - 1] > j) { //因为 i是从1开始的,因此原来公式中的 w[i]修改成 w[i-1]
                    v[i][j] = v[i - 1][j];
                } else { //背包容量大于等于当前商品的容量
                    //因为 i从1开始的,因此公式需要调整成:
                    //v[i][j] = max{v[i-1][j], val[i] + v[i-1][j-w[i]]}
                    //v[i][j] = Math.max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
                    //为了记录商品存放到背包的情况,不能直接的使用上面的公式,需要使用if-else来体现公式
                    if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
                        v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
                        //把当前的情况记录到path
                        path[i][j] = 1;
                    } else {
                        v[i][j] = v[i - 1][j];
                    }
                }
            }
        }
        //输出一下 v看看目前的情况
        for (int i = 0; i < v.length; i++) {
            for (int j = 0; j < v[0].length; j++) {
                System.out.print(v[i][j] + " ");
            }
            System.out.println();
        }
        System.out.println();

        //输出最后是哪些商品被放入,从后往前遍历
        int i = path.length - 1; //行的最大下标
        int j = path[0].length - 1; //列的最大下标
        while (i > 0 && j > 0) { //从path的最后开始找
            if (path[i][j] == 1) {
                System.out.printf("第%d个商品放入到背包\n", i);
                j -= w[i - 1];
            }
            i--;
        }
    }
}

运行结果:
在这里插入图片描述

KMP算法

应用场景-字符串匹配问题

字符串匹配问题:
有一个字符串 str1= ““硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好””,和一个子串 str2=“尚硅谷你尚硅你”。现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1

BF暴力匹配算法

如果用暴力匹配的思路,并假设现在str1匹配到 i 位置,子串str2匹配到 j 位置,则有:

  • 如果当前字符匹配成功(即str1[i] == str2[j]),则i++,j++,继续匹配下一个字符
  • 如果失配(即str1[i]! = str2[j]),令i = i - (j - 1),j = 0。相当于每次匹配失败时,i 回溯,j 被置为0。
  • 用暴力方法解决的话就会有大量的回溯,每次只移动一位,若是不匹配,移动到下一位接着判断,浪费了大量的时间。(不可行!)

代码实现:

package com.atguigu.kmp;

/**
 * @author ysxstart
 * @create 2022-04-24 23:03
 */
public class ViolenceMatch {

    /**
     * 暴力匹配算法实现
     *
     * @param str1 主串
     * @param str2 子串
     * @return 匹配到则返回索引,没有匹配到则返回-1
     */
    public static int violenceMatch(String str1, String str2) {

        char[] s1 = str1.toCharArray();
        char[] s2 = str2.toCharArray();

        int s1Len = s1.length;
        int s2Len = s2.length;

        int i = 0; // i索引指向s1
        int j = 0; // j索引指向s2
        while (i < s1Len && j < s2Len) {
            if (s1[i] == s2[j]) { //匹配ok
                i++;
                j++;
            } else { //匹配 no ok!
                //主串回溯,重新匹配子串;i等于匹配ok的i的下一个索引;若程序刚开始就没有匹配ok,则i每次加1继续循环
                i = i - (j - 1);
                j = 0;
            }
        }
        if (j == s2Len) {
            return i - j;
        } else {
            return -1;
        }
    }

    public static void main(String[] args) {
        //测试暴力匹配算法
        String str1 = "硅硅谷 尚硅谷你尚硅 尚硅谷你尚硅谷你尚硅你好";
        String str2 = "尚硅谷你尚硅你";
        int index = violenceMatch(str1, str2);
        System.out.println("index = " + index);
    }
}

KMP算法最佳应用-字符串匹配问题

字符串匹配问题::
有一个字符串 str1= “BBC ABCDAB ABCDABCDABDE”,和一个子串 str2=“ABCDABD”
现在要判断 str1 是否含有 str2, 如果存在,就返回第一次出现的位置, 如果没有,则返回-1
要求:使用KMP算法完成判断,不能使用简单的暴力匹配算法.

KMP算法思路图解分析:
举例来说,有一个字符串 Str1 = “BBC ABCDAB ABCDABCDABDE”,判断,里面是否包含另一个字符串 Str2 = “ABCDABD”?

  1. 首先,用Str1的第一个字符和Str2的第一个字符去比较,不符合,关键词向后移动一位
    在这里插入图片描述
  2. 重复第一步,还是不符合,再后移
    在这里插入图片描述
  3. 一直重复,直到Str1有一个字符与Str2的第一个字符符合为止
    在这里插入图片描述
  4. 接着比较字符串str1和搜索词str2的下一个字符,还是符合。
    在这里插入图片描述
  5. 遇到Str1有一个字符与Str2对应的字符不符合。
    在这里插入图片描述
  6. 这时候,想到的是继续遍历Str1的下一个字符B,重复第1步。(其实是很不明智的,因为此时BCD已经比较过了,没有必要再做重复的工作。一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是”ABCDAB”。KMP 算法的想法是,设法利用这个已知信息,不要把”搜索位置”移回已经比较过的位置,继续把它向后移,这样就提高了效率。)
    在这里插入图片描述
  7. 怎么做到把刚刚重复的步骤省略掉?可以对Str2计算出一张《部分匹配表》
    在这里插入图片描述
  8. 已知空格与D不匹配时,前面六个字符”ABCDAB”是匹配的。查表可知,最后一个匹配字符B对应的”部分匹配值”为2,因此按照下面的公式算出向后移动的位数:
  • 移动位数 = 已匹配的字符数 - 对应的部分匹配值
  • 因为 6 - 2 等于4,所以将搜索词向后移动 4 位。
  1. 因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2(”AB”),对应的”部分匹配值”为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移 2 位。
    在这里插入图片描述
  2. 因为空格与A不匹配,继续后移一位。
    在这里插入图片描述
  3. 逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动 4 位。
    在这里插入图片描述
  4. 逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动 7 位,这里就不再重复了。
    在这里插入图片描述
  5. 《部分匹配表》的产生
  • 先介绍前缀,后缀是什么
  • 在这里插入图片描述
  • “部分匹配值”就是”前缀”和”后缀”的最长的共有元素的长度。以”ABCDABD”为例,
  • -”A”的前缀和后缀都为空集,共有元素的长度为0;
  • -”AB”的前缀为[A],后缀为[B],共有元素的长度为0;
  • -”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
  • -”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
  • -”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为1;
  • -”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,长度为2;
  • -”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
  1. ”部分匹配”的实质是:有时候,字符串头部和尾部会有重复。比如,”ABCDAB”之中有两个”AB”,那么它的”部分匹配值”就是2(”AB”的长度)。搜索词移动的时候,第一个”AB”向后移动 4 位(字符串长度-部分匹配值),就可以来到第二个”AB”的位置。
    在这里插入图片描述

到此KMP算法思想分析完毕!

代码实现:

package com.atguigu.kmp;

import java.util.Arrays;

/**
 * @author ysxstart
 * @create 2022-04-25 13:10
 */
public class KMPAlgorithm2 {


    /**
     * kmp算法实现
     *
     * @param str1 主串
     * @param str2 子串
     * @param next 子串的部分匹配值表
     * @return 不返回-1表示找到
     */
    public static int kmpSearch(String str1, String str2, int[] next) {

        for (int i = 0, j = 0; i < str1.length(); i++) {
            //需要处理 str1.charAt(i) != str2.charAt(j), 去调整j的大小
            //KMP算法核心点
            while (j > 0 && str1.charAt(i) != str2.charAt(j)) {
                j = next[j - 1]; //获取需移动的位数
            }
            if (str1.charAt(i) == str2.charAt(j)) {
                j++;
            }
            if (j == str2.length()) {
                return i - (j - 1); //j要减1,因 j=str2.length
            }
        }
        return -1;
    }

    //生成部分匹配值表,dest搜索词
    private static int[] kmpNext(String dest) {
        //next数组保存部分匹配值;索引表示字符,数组值表示部分匹配值
        int[] next = new int[dest.length()];
        //字符串长度为1,部分匹配值就是0
        next[0] = 0;
        for (int i = 1, j = 0; i < dest.length(); i++) {
            //当dest.charAt(i) != dest.charAt(j) ,需要从next[j-1]获取新的j
            while (j > 0 && dest.charAt(i) != dest.charAt(j)) {
                // 1.第一次进入while循环时,j=2,i=6即'C'和'D'不同,则取子串ABC的前一个子串AB的部分匹配值,即0。
                // 2.j = 0; i =6 和j=0相比较,即'D'和'A',首尾不同。即ABCDABD串的前缀和后缀没有公共元素,部分匹配值为0;next[6] = 0;
                j = next[j - 1];
            }
            //当dest.charAt(i) == dest.charAt(j)满足时,部分匹配值就是 +1
            if (dest.charAt(i) == dest.charAt(j)) {
                j++;
            }
            next[i] = j;
        }
        return next;
    }

    public static void main(String[] args) {
        String str1 = "BBC ABCDAB ABCDABCDABDE";
        String str2 = "ABCDABD";

        int[] next = kmpNext(str2);
        System.out.println("搜索词 " + str2 + " 的部分匹配表:" + Arrays.toString(next));
        int index = kmpSearch(str1, str2, next);
        System.out.println("找到的子串开始索引:" + index);
    }
}

运行结果:
在这里插入图片描述

贪心算法

贪心算法介绍

  • 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
  • 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果

贪心算法最佳应用-集合覆盖

假设存在如下表的需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号!

广播台覆盖地区
K1“北京”, “上海”, “天津”
K2“广州”, “北京”, “深圳”
K3“成都”, “上海”, “杭州”
K4“上海”, “天津”
K5“杭州”, “大连”

思路分析:
如何找出覆盖所有地区的广播台的集合呢,使用穷举法实现,列出每个可能的广播台的集合,这被称为幂集。假设总的有n个广播台,则广播台的组合总共有2ⁿ -1 个,假设每秒可以计算10个子集, 如图:
在这里插入图片描述

使用贪婪算法,效率高:
目前并没有算法可以快速计算得到准备的值, 使用贪婪算法,则可以得到非常接近的解,并且效率高。选择策略上,因为需要覆盖全部地区的最小集合:

  1. 遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
  2. 将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
  3. 重复第1步直到覆盖了全部的地区

在这里插入图片描述

代码实现

package com.atguigu.greedy;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;

/**
 * @author ysxstart
 * @create 2022-04-25 22:41
 */
public class GreedyAlgorithm2 {

    public static void main(String[] args) {

        //创建广播电台,放入到Map
        HashMap<String, HashSet<String>> broadcasts = new HashMap<>();

        //创建每个电台对应的覆盖的地区
        HashSet<String> hashSet1 = new HashSet<>();
        hashSet1.add("北京");
        hashSet1.add("上海");
        hashSet1.add("天津");
        HashSet<String> hashSet2 = new HashSet<>();
        hashSet2.add("广州");
        hashSet2.add("北京");
        hashSet2.add("深圳");
        HashSet<String> hashSet3 = new HashSet<>();
        hashSet3.add("成都");
        hashSet3.add("上海");
        hashSet3.add("杭州");
        HashSet<String> hashSet4 = new HashSet<>();
        hashSet4.add("上海");
        hashSet4.add("天津");
        HashSet<String> hashSet5 = new HashSet<>();
        hashSet5.add("杭州");
        hashSet5.add("大连");

        //加入到map,将各个电台放入到broadcasts
        broadcasts.put("K1", hashSet1);
        broadcasts.put("K2", hashSet2);
        broadcasts.put("K3", hashSet3);
        broadcasts.put("K4", hashSet4);
        broadcasts.put("K5", hashSet5);

        //allAreas存放所有的地区,即未覆盖的地区
        HashSet<String> allAreas = new HashSet<>();
        for (HashSet<String> value : broadcasts.values()) {
            allAreas.addAll(value);
        }

        List<String> selectList = greedy(broadcasts, allAreas);
        System.out.println("得到的选择结果是:" + selectList);
    }

    public static List<String> greedy(HashMap<String, HashSet<String>> broadcasts, HashSet<String> allAreas) {
        //存放选择的电台集合
        ArrayList<String> selects = new ArrayList<>();

        /*
         临时集合tempSet,存放遍历过程中该电台覆盖的地区 和当前还没有覆盖的地区(allAreas)的交集;
         临时集合maxTempSet,(上一个maxKey)maxKey和allAreas集合的交集,用于后面与当前的key和allAreas的交集的数量作比较
         */
        HashSet<String> tempSet = new HashSet<>();
        HashSet<String> maxTempSet = new HashSet<>();

        /*
        定义maxKey,保存在一次遍历过程中,能够覆盖最大 未覆盖的地区对应的电台的key
        如果maxKey不为null,则会加入到selects
         */
        String maxKey = null;

        //开始循环,如果allAreas不为0,则表示还没有覆盖完所有的地区
        while (allAreas.size() > 0) {
            //每进行一次while,需要重置maxKey
            maxKey = null;
            //遍历 broadcasts,取出对应key,得到maxKey
            for (String key : broadcasts.keySet()) {
                //每进行一次for重置临时集合tempSet,maxTempSet不用重置
                tempSet.clear();
                //当前这个key能够覆盖的地区
                HashSet<String> areas = broadcasts.get(key);
                tempSet.addAll(areas);
                //求出tempSet和allAreas集合的交集,交集结果会赋给tempSet
                tempSet.retainAll(allAreas);
                /*
                如果当前这个集合包含的未覆盖地区的数量,比maxKey指向的集合地区还多,就需要重置maxKey
                体现出贪心算法的特点,每次都选择最优的:
                tempSet.size() > maxTempSet.size(); maxTempSet.size()是上一个maxKey和allAreas集合的交集的数量
                简单点:就是比较每一轮中每一个key中和allAreas集合的交集的数量大小,最大的即为maxKey。即被选择加入selects集合的电台
                 */
                if (tempSet.size() > 0 && (maxKey == null ||
                        tempSet.size() > maxTempSet.size())) {
                    maxKey = key;
                    maxTempSet.addAll(broadcasts.get(maxKey));
                    maxTempSet.retainAll(allAreas);
                }
            }
            //maxKey != null,就应该将maxKey加入selects
            if (maxKey != null) {
                selects.add(maxKey);
                //将maxKey指向的广播电台覆盖的地区,从allAreas去掉
                allAreas.removeAll(broadcasts.get(maxKey));
            }
        }
        //循环结束之后就得到了贪心算法的最优的一种解法(可能也不是最优的,看具体需求情况)
        return selects;
    }
}

运行结果:
在这里插入图片描述
贪心算法注意事项和细节

贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果。
比如上题的算法选出的是K1, K2, K3, K5,符合覆盖了全部的地区,但是我们发现 K2, K3,K4,K5 也可以覆盖全部地区,如果K2 的使用成本低于K1,那么我们上题的 K1, K2, K3, K5 虽然是满足条件,但是并不是最优的.

普里姆算法

应用场景-修路问题
在这里插入图片描述

有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通,各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
思路: 将10条边,连接即可,但是总的里程数不是最小.
正确的思路: 就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少

最小生成树

修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。

  1. 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
  2. N个顶点,一定有N-1条边
  3. 包含全部顶点
  4. N-1条边都在图中
  5. 举例说明(如图下图)
  6. 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
    在这里插入图片描述

普里姆算法介绍

普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
普利姆的算法如下:

  1. 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
  2. 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
  3. 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
  4. 重复步骤2,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
    在这里插入图片描述

代码实现:

package com.atguigu.prim;

import java.util.Arrays;

/**
 * @author ysxstart
 * @create 2022-04-26 19:54
 */
public class PrimAlgorithm {
    public static void main(String[] args) {
        //测试图是否创建ok
        char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int verxs = data.length;
        //邻接矩阵的关系使用二维数组表示,10000这个大数,表示两个点不联通
        int[][] weight = new int[][]{
                {10000, 5, 7, 10000, 10000, 10000, 2},
                {5, 10000, 10000, 9, 10000, 10000, 3},
                {7, 10000, 10000, 10000, 8, 10000, 10000},
                {10000, 9, 10000, 10000, 10000, 4, 10000},
                {10000, 10000, 8, 10000, 10000, 5, 4},
                {10000, 10000, 10000, 4, 5, 10000, 6},
                {2, 3, 10000, 10000, 4, 6, 10000}};
        //创建MGraph对象
        MGraph graph = new MGraph(verxs);
        //创建一个MinTree对象
        MinTree minTree = new MinTree();
        minTree.createGraphMatrix(graph, verxs, data, weight);
        //输出
        minTree.showGraph(graph);
        //测试普利姆算法
        int weightNum = minTree.prim(graph, 0);
        System.out.println("权值:" + weightNum);

    }
}


//创建最小生成树->村庄的图(连通网)
class MinTree {

    /**
     * 创建图的邻接矩阵
     *
     * @param graph  图对象
     * @param verxs  图对应的顶点个数
     * @param data   图的各个顶点的值
     * @param weight 图的邻接矩阵
     */
    public void createGraphMatrix(MGraph graph, int verxs, char[] data, int[][] weight) {
        int i, j;
        for (i = 0; i < verxs; i++) {
            graph.data[i] = data[i];
            for (j = 0; j < verxs; j++) {
                graph.weight[i][j] = weight[i][j];
            }
        }
    }

    //显示图的邻接矩阵
    public void showGraph(MGraph graph) {
        for (int[] row : graph.weight) {
            System.out.println(Arrays.toString(row));
        }
    }

    /**
     * 编写prim算法,得到最小生成树
     *
     * @param graph 图
     * @param v     表示从图的第几个顶点开始生成'A'->0 'B'->1...
     * @return 返回权值大小
     */
    public int prim(MGraph graph, int v) {

        //visited[] 标记顶点是否被访问过,默认元素的值都是0,表示没有访问过
        int[] visited = new int[graph.verxs];
        //把当前这个结点标记为已访问
        visited[v] = 1;
        //h1和h2记录每个子图中 边的权值最小的两个顶点的下标
        int h1 = -1;
        int h2 = -1;
        //将minWeight初始成一个大数(顶点之间不存在边),后面在遍历过程中,会被替换
        int minWeight = 10000;
        //最短路径的边的权值的总和
        int weightSum = 0;
        //graph.verxs顶点,普利姆算法结束后,有 graph.verxs-1条边
        for (int k = 1; k < graph.verxs; k++) {
            //这是确定每一次生成的子图 eg:<A,G,B>中,和哪个未访问过的结点的距离最近。
            //简单点说就是:判断顶点与顶点之间的距离大小,将距离小的加入最小生成树
            for (int i = 0; i < graph.verxs; i++) { //i结点表示被访问过的结点
                for (int j = 0; j < graph.verxs; j++) { //j结点表示还没有访问过的结点
                    if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
                        //替换minWeight(寻找已经访问过的结点和未访问过的结点间的权值最小的边)
                        minWeight = graph.weight[i][j];
                        h1 = i;
                        h2 = j;
                    }
                }
            }
            //找到一条边是最小
            System.out.println("边<" + graph.data[h1] + "," + graph.data[h2] + "> 权值:" + minWeight);
            //将当前这个结点标记为已经访问
            visited[h2] = 1;
            //记录权值和
            weightSum += minWeight;
            //minWeight 重新设置为最大值10000
            minWeight = 10000;
        }
        return weightSum;
    }
}

//创建图,表示连通网
class MGraph {
    int verxs; //表示图的节点个数
    char[] data; //存放结点数据
    int[][] weight; //存放边(权值),就是邻接矩阵

    public MGraph(int verxs) {
        this.verxs = verxs;
        data = new char[verxs];
        weight = new int[verxs][verxs];
    }
}

运行结果:
在这里插入图片描述

克鲁斯卡尔算法

应用场景-公交站问题
在这里插入图片描述

某城市新增7个站点(A, B, C, D, E, F, G) ,现在需要修路把7个站点连通。各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里。问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法介绍

  • 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  • 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  • 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止

以城市公交站问题来图解说明 克鲁斯卡尔算法的原理和步骤

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
在这里插入图片描述

克鲁斯卡尔算法图解
以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。
在这里插入图片描述

第1步:将边<E,F>加入R中。边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。
此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。

克鲁斯卡尔算法分析
根据前面介绍的克鲁斯卡尔算法的基本思想和做法,能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:

  • 问题一: 对图的所有边按照权值大小进行排序。
  • 问题二: 将边添加到最小生成树中时,怎么样判断是否形成了回路。
  • 问题一很好解决,采用排序算法进行排序即可。
  • 问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路-举例说明(如图)
在这里插入图片描述
在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F。
(03) E的终点是F。
(04) F的终点是F。

关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,加入的边的两个顶点不能都指向同一个终点,否则将构成回路。

代码实现:

package com.atguigu.kruskal;


import java.util.Arrays;

/**
 * @author ysxstart
 * @create 2022-04-27 23:04
 */
public class KruskalCase2 {

    private int edgeNum; //边的数量
    private char[] vertxs; //顶点数组
    private int[][] matrix; //邻接矩阵
    //INF表示两个顶点不连通
    private static final int INF = Integer.MAX_VALUE;

    //构造器
    public KruskalCase2(char[] vertxs, int[][] matrix) {
        int vlen = vertxs.length;
        //初始化顶点数组和邻接矩阵
        //初始化顶点,复制拷贝的方式
        this.vertxs = new char[vlen];
        for (int i = 0; i < vlen; i++) {
            this.vertxs[i] = vertxs[i];
        }
        //初始化边,复制拷贝的方式
        this.matrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }
        //初始化边的数量
        for (int i = 0; i < vlen; i++) {
            for (int j = i + 1; j < vlen; j++) {
                if (this.matrix[i][j] != INF) {
                    edgeNum++;
                }
            }
        }
    }

    //打印邻接矩阵
    private void print() {
        System.out.println("邻接矩阵:");
        for (int i = 0; i < vertxs.length; i++) {
            for (int j = 0; j < vertxs.length; j++) {
                System.out.printf("%12d", matrix[i][j]);
            }
            System.out.println();
        }
    }

    //克鲁斯卡尔算法所需方法:

    /**
     * 获取图中的边(通过matrix邻接矩阵来获取),放到EData[]数组中,后面需要遍历该数组
     * EData[]形式: [EData{<A, B> =12}, EData{<A, F> =16}],toString()方法
     *
     * @return 返回边的数组
     */
    private EData2[] getEdges() {
        int index = 0;
        EData2[] edges = new EData2[edgeNum];
        for (int i = 0; i < vertxs.length; i++) {
            for (int j = i + 1; j < vertxs.length; j++) {
                if (matrix[i][j] != INF) {
                    edges[index++] = new EData2(vertxs[i], vertxs[j], matrix[i][j]);
                }
            }
        }
        return edges;
    }

    /**
     * 对边进行排序处理, 冒泡排序
     *
     * @param edges 边的集合
     */
    private void sortEdges(EData2[] edges) {
        for (int i = 0; i < edges.length - 1; i++) {
            for (int j = 0; j < edges.length - 1 - i; j++) {
                if (edges[j].weight > edges[j + 1].weight) {
                    EData2 temp = edges[j];
                    edges[j] = edges[j + 1];
                    edges[j + 1] = temp;
                }
            }
        }
    }

    /**
     * 获取顶点的下标
     *
     * @param ch 顶点的值,比如'A','B'
     * @return 返回 ch顶点对应的下标,如果找不到,返回-1
     */
    private int getPosition(char ch) {
        for (int i = 0; i < vertxs.length; i++) {
            if (ch == vertxs[i]) {
                return i;
            }
        }
        return -1;
    }

    /**
     * 获取下标为 i的顶点的终点()的下标, 用于后面判断两个顶点的终点是否相同
     *
     * @param ends 数组记录了各个顶点对应的终点,ends数组是在遍历过程中,逐步形成(动态的)
     * @param i    表示顶点对应的下标
     * @return 返回下标为 i的这个顶点对应的终点的下标
     */
    private int getEnds(int[] ends, int i) {
        while (ends[i] != 0) {
            i = ends[i];
        }
        return i;
    }

    //克鲁斯卡尔算法实现
    public void kruskal() {

        //表示最后结果数组的索引
        int index = 0;
        //用于保存 "已有最小生成树"中的每个顶点在最小生成树中的{终点}
        int[] ends = new int[edgeNum];
        //创建结果数组, 保存最后的最小生成树
        EData2[] rets = new EData2[edgeNum];

        //获取图中所有的边的集合,一共有12边
        EData2[] edges = getEdges();
        System.out.println("排序前边的集合:" + Arrays.toString(edges));
        //按照边的权值大小进行排序(从小到大)
        sortEdges(edges);
        System.out.println("排序后边的集合:" + Arrays.toString(edges));

        /*
        遍历edges数组,将边添加到最小生成树中时,判断准备加入的边是否形成了回路,
        如果没有,就加入 rets, 否则不能加入
         */
        for (int i = 0; i < edges.length; i++) {
            //获取到第 i条边的第一个顶点(起点)
            int p1 = getPosition(edges[i].start);
            //获取到第 i条边的第二个顶点
            int p2 = getPosition(edges[i].end);
            //获取 p1这个顶点在已有最小生成树中的终点的下标
            int m = getEnds(ends, p1);
            //获取 p2这个顶点在已有最小生成树中的终点的下标
            int n = getEnds(ends, p2);
            //判断是否构成回路
            if (m != n) {
                //设置 m在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
                ends[m] = n;
                //有一条边加入到rets数组
                rets[index++] = edges[i];
            }
        }
        //<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
        //统计并打印 "最小生成树", 输出 rets
        System.out.println("最小生成树为:");
        for (int i = 0; i < index; i++) {
            System.out.println(rets[i]);
        }
    }


    public static void main(String[] args) {
        char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        //克鲁斯卡尔算法的邻接矩阵
        int[][] matrix = {
                /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
                /*A*/ {0, 12, INF, INF, INF, 16, 14},
                /*B*/ {12, 0, 10, INF, INF, 7, INF},
                /*C*/ {INF, 10, 0, 3, 5, 6, INF},
                /*D*/ {INF, INF, 3, 0, 4, INF, INF},
                /*E*/ {INF, INF, 5, 4, 0, 2, 8},
                /*F*/ {16, 7, 6, INF, 2, 0, 9},
                /*G*/ {14, INF, INF, INF, 8, 9, 0}
        };
        KruskalCase2 kruskalCase2 = new KruskalCase2(vertexs, matrix);
        kruskalCase2.print();
        kruskalCase2.kruskal();
    }
}


//创建一个类 EData ,它的对象实例就表示一条边
class EData2 {
    char start; //边的一个点
    char end; //边的另外一个点
    int weight; //边的权值

    public EData2(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }

    @Override
    public String toString() {
        return "EData2{<" + start + ", " + end + "> =" + weight + '}';
    }
}

运行结果:
在这里插入图片描述

迪杰斯特拉算法

应用场景-最短路径问题
在这里插入图片描述

  • 战争时期,胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要- 分别把邮件分别送到 A, B, C , D, E, F 六个村庄
  • 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
  • 问:如何计算出G村庄到 其它各个村庄的最短距离?
  • 如果从其它点出发到各个点的最短距离又是多少?

迪杰斯特拉(Dijkstra)算法介绍

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

迪杰斯特拉(Dijkstra)算法过程

设置出发顶点为v,顶点集合V{v1,v2,vi…},v到V中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis集合记录着v到图中各顶点的距离(到自身可以看作0,v到vi距离对应为di)

  1. 从Dis中选择值最小的距离并移出Dis集合,同时移出V集合中对应的顶点vi,此时的v到vi即为最短路径
  2. 更新Dis集合,更新规则为:比较v到V集合中顶点的距离值,与v通过vi到V集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为vi,表明是通过vi到达的)
  3. 重复执行两步骤,直到最短路径顶点为目标顶点即可结束

思路图解
在这里插入图片描述

代码实现:

package com.atguigu.dijkstra;

import java.util.Arrays;

/**
 * @author Mustang
 * @create 2022-04-29 9:37
 */
public class DijkstraAlgorithm2 {
    public static void main(String[] args) {

        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] matrix = new int[vertex.length][vertex.length];
        //表示不可以连接
        final int N = 65535;
        matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, N, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, N, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, N, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, N};

        Graph2 graph2 = new Graph2(vertex, matrix);
        //测试图的邻接矩阵是否ok
        graph2.showGraph();
        //测试迪杰斯特拉算法
        graph2.dijkstra(6);
        graph2.showDijkstra();

    }
}

//图,村庄
class Graph2 {

    private char[] vertex; //顶点数组
    private int[][] matrix; //邻接矩阵
    private VisitedVertex2 vv; //已经访问的顶点的集合

    //构造器
    public Graph2(char[] vertex, int[][] matrix) {
        int len = vertex.length;
        this.vertex = new char[len];
        for (int i = 0; i < len; i++) {
            this.vertex[i] = vertex[i];
        }
        this.matrix = new int[len][len];
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                this.matrix[i][j] = matrix[i][j];
            }
        }
    }

    //显示图
    public void showGraph() {
        for (int[] row : matrix) {
            System.out.println(Arrays.toString(row));
        }
    }

    //显示迪杰斯特拉算法结果
    public void showDijkstra() {
        vv.show();
    }

    /**
     * 迪杰斯特拉算法实现
     *
     * @param index 出发的顶点
     */
    public void dijkstra(int index) {
        vv = new VisitedVertex2(vertex.length, index);
        for (int i = 0; i < vertex.length; i++) {
            update(index); //更新index顶点到周围顶点的距离和周围顶点的前驱顶点
            index = vv.updateArr(); //更新访问顶点
        }
    }

    //更新 index下标顶点到周围顶点的距离和周围顶点的前驱顶点.G->A,G->B;前驱:G<-B,B的前驱是G
    private void update(int index) {
        int len = 0;
        //根据出发顶点index 遍历邻接矩阵的matrix[index]行
        for (int i = 0; i < matrix[index].length; i++) {
            //len含义是: 出发顶点到index顶点的距离 + 从index顶点到i顶点的距离的和.G->G + G-A
            len = vv.getDis(index) + matrix[index][i];
            // i顶点没有被访问过,并且 len小于出发顶点到i顶点的距离,就需要更新
            if (!vv.isVisited(i) && len < vv.getDis(i)) {
                vv.updateDis(i, len); //更新出发顶点到 i顶点的距离
                vv.updatePre(i, index); //更新 i顶点的前驱为index顶点
            }
        }
    }
}


//已访问顶点集合
class VisitedVertex2 {

    //记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
    public int[] already_arr;
    //每个顶点下标对应的前一个顶点下标(顶点的前驱顶点),会动态更新
    public int[] pre_visited;
    //记录出发顶点到其他所有顶点的距离,
    //比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
    public int[] dis;

    /**
     * 构造器
     *
     * @param length 顶点的个数
     * @param index  出发顶点的下标, 比如G顶点,下标就是6
     */
    public VisitedVertex2(int length, int index) {
        this.already_arr = new int[length];
        this.pre_visited = new int[length];
        this.dis = new int[length];
        //初始化 dis数组
        Arrays.fill(dis, 65535);
        //设置出发顶点被访问过
        this.already_arr[index] = 1;
        //设置出发顶点的到它自己的距离为 0
        this.dis[index] = 0;
    }

    //迪杰斯特拉算法所需方法:

    /**
     * 返回出发顶点到 index顶点的距离
     *
     * @param index
     * @return
     */
    public int getDis(int index) {
        return dis[index];
    }

    /**
     * 判断index顶点是否被访问过
     *
     * @param index
     * @return 如果访问过, 就返回true, 否则访问false
     */
    public boolean isVisited(int index) {
        return already_arr[index] == 1;
    }

    /**
     * 更新出发顶点到 index顶点的距离
     *
     * @param index 更新的顶点
     * @param len   更新的距离
     */
    public void updateDis(int index, int len) {
        dis[index] = len;
    }

    /**
     * 更新 pre顶点的前驱顶点为 index顶点
     *
     * @param pre
     * @param index
     */
    public void updatePre(int pre, int index) {
        pre_visited[pre] = index;
    }

    /**
     * 继续选择顶点并返回新的访问顶点,比如这里的 G完后,
     * 就是 A点作为新的访问顶点(注意不是出发顶点)
     *
     * @return 返回新的访问顶点
     */
    public int updateArr() {
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            //没有访问过且距离最小
            if (already_arr[i] == 0 && dis[i] < min) {
                min = dis[i];
                index = i;
            }
        }
        //更新 index顶点被访问过
        already_arr[index] = 1;
        return index;
    }

    //显示最后的结果
    public void show() {

        System.out.println("====================================================");
        //输出already_arr
        System.out.print("already_arr: ");
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        //输出pre_visited
        System.out.print("pre_visited: ");
        for (int i : pre_visited) {
            System.out.print(i + " ");
        }
        System.out.println();
        //输出dis
        System.out.print("dis: ");
        for (int i : dis) {
            System.out.print(i + " ");
        }
        System.out.println();
        System.out.println("====================================================");

        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int count = 0;
        for (int i : dis) {
            if (i != 65535) {
                System.out.print(vertex[count] + "(" + i + ") ");
            } else {
                System.out.print("N ");
            }
            count++;
        }
    }
}

运行结果:
在这里插入图片描述

弗洛伊德算法

弗洛伊德(Floyd)算法介绍

  • 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名
  • 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
  • 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
  • 弗洛伊德算法 VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径

弗洛伊德(Floyd)算法图解分析

  1. 设置顶点vi到顶点vk的最短路径已知为Lik,顶点vk到vj的最短路径已知为Lkj,顶点vi到vj的路径为Lij,则vi到vj的最短路径为:min((Lik+Lkj),Lij),vk的取值为图中所有顶点,则可获得vi到vj的最短路径
  2. 至于vi到vk的最短路径Lik或者vk到vj的最短路径Lkj,是以同样的方式获得
    在这里插入图片描述
    第一轮循环中,以A(下标为:0)作为中间顶点,距离表和前驱关系更新为:
    在这里插入图片描述

分析如下:

  1. 以A顶点作为中间顶点是,B->A->C的距离由N->9,同理C到B;C->A->G的距离由N->12,同理G到C
  2. 更换中间顶点,循环执行操作,直到所有顶点都作为中间顶点更新后,计算结束

弗洛伊德(Floyd)算法最佳应用-最短路径
在这里插入图片描述

胜利乡有7个村庄(A, B, C, D, E, F, G),各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里。问:如何计算出各村庄到 其它各村庄的最短距离?

代码实现:

package com.atguigu.floyd;

import java.util.Arrays;

/**
 * @author Mustang
 * @create 2022-04-30 10:42
 */
public class FloydAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;
        matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, 0, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, 0, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};
        Graph graph = new Graph(vertex, matrix);
        graph.floyd();
        graph.show();
    }
}


//创建图
class Graph {

    //存放顶点的数组
    private char[] vertex;
    //保存从各个顶点出发到其它顶点的距离,最后的结果也是保留在该数组
    private int[][] dis;
    //保存到达目标顶点的前驱顶点
    private int[][] pre;

    /**
     * 构造器
     *
     * @param matrix 邻接矩阵
     * @param vertex 顶点数组
     */
    public Graph(char[] vertex, int[][] matrix) {
        int len = vertex.length;
        //初始化顶点数组和邻接矩阵
        this.vertex = new char[len];
        for (int i = 0; i < len; i++) {
            this.vertex[i] = vertex[i];
        }
        this.dis = new int[len][len];
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                this.dis[i][j] = matrix[i][j];
            }
        }
        //对pre数组初始化, 注意存放的是前驱顶点的下标
        this.pre = new int[len][len];
        for (int i = 0; i < len; i++) {
            Arrays.fill(pre[i], i);
        }
    }

    //显示pre数组和dis数组
    public void show() {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        for (int k = 0; k < dis.length; k++) {
            System.out.print("前驱关系--> ");
            for (int i = 0; i < dis.length; i++) {
                System.out.print(vertex[pre[k][i]] + " ");
            }
            System.out.println();
            for (int i = 0; i < dis.length; i++) {
                System.out.print("(" + vertex[k] + "到" + vertex[i] + "的最短路径是" + dis[k][i] + ") ");
            }
            System.out.println();
        }
    }

    //弗洛伊德算法实现,3层for循环
    public void floyd() {
        int len = 0; //保存距离
        //对中间顶点遍历,k就是中间顶点的下标 [A, B, C, D, E, F, G]
        for (int k = 0; k < dis.length; k++) {
            //从i顶点开始出发 [A, B, C, D, E, F, G]
            for (int i = 0; i < dis.length; i++) {
                //到达j顶点 [A, B, C, D, E, F, G]
                for (int j = 0; j < dis.length; j++) {
                    //求出从 i顶点出发,经过 k中间顶点,到达 j顶点距离
                    len = dis[i][k] + dis[k][j];
                    //如果len小于 dis[i][j]
                    if (len < dis[i][j]){
                        dis[i][j] = len; //更新距离
                        pre[i][j] = pre[k][j]; //更新前驱顶点
                    }
                }
            }
        }
    }
}

运行结果:
在这里插入图片描述

马踏棋盘算法

马踏棋盘算法介绍和游戏演示

马踏棋盘算法也被称为骑士周游问题
将马随机放在国际象棋的8×8棋盘Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格
在这里插入图片描述

马踏棋盘游戏代码实现

  • 马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。
  • 如果使用回溯(就是深度优先搜索)来解决,假如马儿踏了53个点,如图:走到了第53个,坐标(1,0),发现已经走到尽头,没办法,那就只能回退了,查看其他的路径,就在棋盘上不停的回溯……
  • 分析第一种方式的问题,并使用贪心算法(greedyalgorithm)进行优化。解决马踏棋盘问题.

思路图解:
在这里插入图片描述

代码实现:

package com.atguigu.horse;

import java.awt.*;
import java.util.ArrayList;
import java.util.Comparator;

/**
 * @author Mustang
 * @create 2022-05-04 13:50
 */
public class HorseChessboard2 {

    private static int X; //棋盘的列数
    private static int Y; //棋盘的行数
    //标记棋盘的各个位置是否被访问过
    private static boolean[] visited;
    //标记棋盘的所有位置是否都被访问,如果为true,表示成功
    private static boolean finished;

    public static void main(String[] args) {

        System.out.println("马踏棋盘算法 Begining~");
        X = 8;
        Y = 8;
        int row = 1;
        int column = 1;
        int[][] chessboard = new int[X][Y];
        visited = new boolean[X * Y];
        //测试耗时
        long start = System.currentTimeMillis();
        traversalChessboard(chessboard, row - 1, column - 1, 1);
        long end = System.currentTimeMillis();
        System.out.println("共耗时:" + (end - start) + "毫秒");
        //输出棋盘的最后情况
        for (int[] rows : chessboard) {
            for (int step : rows) {
                System.out.print(step + "\t");
            }
            System.out.println();
        }
    }

    /**
     * 完成骑士周游问题算法
     *
     * @param chessboard 棋盘
     * @param row        马儿当前的位置的行 从0开始
     * @param column     马儿当前的位置的列 从0开始
     * @param step       是第几步 ,初始位置就是第1步
     */
    public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
        chessboard[row][column] = step;
        //标记该位置已经访问
        visited[row * X + column] = true;
        //获取当前位置可以走的下一个位置的集合
        ArrayList<Point> ps = next(new Point(column, row));
        //对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序
        sort(ps);
        while (!ps.isEmpty()) {
            //取出下一个可以走的位置
            Point p = ps.remove(0);
            //判断该点是否已经访问过
            if (!visited[p.y * X + p.x]) { //说明还没有访问过
                traversalChessboard(chessboard, p.y, p.x, step + 1);
            }
        }
        //判断马儿是否完成了任务,使用 step和应该走的步数比较。如果没有达到数量,则表示没有完成任务,将整个棋盘置 0
        //说明: step < X * Y  成立的情况有两种:1.马儿到达目标位置,仍然没有走完 2.棋盘处于一个回溯过程
        if (step < X * Y && !finished) {
            //当前这步没有走过,用于回溯之后再走
            chessboard[row][column] = 0;
            visited[row * X + column] = false;
        } else {
            finished = true;
        }
    }

    /**
     * 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),
     * 并放入到一个集合中(ArrayList), 最多有8个位置
     *
     * @param curPoint 当前位置
     * @return 返回位置集合
     */
    public static ArrayList<Point> next(Point curPoint) {

        //位置集合
        ArrayList<Point> ps = new ArrayList<>();
        //创建一个Point位置
        Point p1 = new Point();
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走6这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走7这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走0这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走1这个位置
        if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走2这个位置
        if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走3这个位置
        if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
            ps.add(new Point(p1));
        }
        //判断马儿可以走4这个位置
        if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
            ps.add(new Point(p1));
        }
        return ps;
    }

    //根据当前这一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
    public static void sort(ArrayList<Point> ps) {
        ps.sort(new Comparator<Point>() {
            @Override
            public int compare(Point o1, Point o2) {
                int count1 = next(o1).size();
                int count2 = next(o2).size();
                if (count1 < count2) {
                    return -1;
                } else if (count1 == count2) {
                    return 0;
                } else {
                    return 1;
                }
            }
        });
    }
}

运行结果:
在这里插入图片描述
没有使用贪心算法时运行时间:
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值