图
图基本介绍
为什么要有图
- 前面我们学了线性表和树
- 线性表局限于一个直接前驱和一个直接后继的关系
- 树也只能有一个直接前驱也就是父节点
- 当我们需要表示多对多的关系时, 这里我们就用到了图
图的举例说明
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。如图:
图的常用概念
图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵的row和col表示的是1…n个点。
邻接表
- 邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
- 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
案例
要求: 代码实现如下图结构.
思路分析
(1) 存储顶点String 使用 ArrayList (2) 保存矩阵 int[][] edges
图的深度优先遍历
图遍历介绍
所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历
深度优先遍历基本思想
图的深度优先搜索(Depth First Search) 。
- 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
- 显然,深度优先搜索是一个递归的过程
深度优先遍历算法步骤
- 访问初始结点v,并标记结点v为已访问。
- 查找结点v的第一个邻接结点w。
- 若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续(回溯)。
- 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)(纵向)。若w已被访问,则执行5。
- 查找结点v的w邻接结点的下一个邻接结点(横向),转到步骤3。
图的广度优先遍历
广度优先遍历基本思想
图的广度优先搜索(Broad First Search) 。
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
广度优先遍历算法步骤
- 访问初始结点v并标记结点v为已访问。
- 结点v入队列
- 当队列非空时,继续执行操作4,否则算法结束。
- 出队列,取得队头结点u。
- 查找结点u的第一个邻接结点w。
- 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
6.1 若结点w尚未被访问,则访问结点w并标记为已访问。
6.2 结点w入队列
6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
代码实现
package com.atguigu.graph;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
/**
* @author ysxstart
* @create 2022-04-22 12:14
*/
public class GraphDemo2 {
private ArrayList<String> vertexList; //存储顶点集合
private int[][] edges; //存储图对应的邻接矩阵
private boolean[] isVisited; //数组中记录某个结点是否被访问
private int numOfEdges; //表示边的数目
//构造器
public GraphDemo2(int n) {
//初始化矩阵和vertexList
vertexList = new ArrayList<>(n);
edges = new int[n][n];
numOfEdges = 0;
}
//一、创建图,图的常用方法
//1.插入节点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
/**
* 2.添加边
* 无向图,添加边,即添加邻接关系
*
* @param v1 表示顶点的下标,第一个顶点对应的下标
* @param v2 第二个顶点对应的下标
* @param weight 边的权值,1表示是直接邻接关系,0表示无直接邻接关系
*/
public void insertEdge