原题链接
题意
给你一个整数d让你找出最小的整数a
a满足的条件是1.至少有4个因子,2.a的任意两个因子之差最少为d
思路
1.数论简单题,用到了线性筛求素数
2.我们观察样例,1肯定是选择的,最后一个因子肯定是a本身,然后中间两个是a的因子,我们可以发现,最好的情况这两个因子相乘等于a,这样才会使得a最小,为了保证因子之间的差值确定,那么这两个因子应该为素数
3.确定了这些,我们只需要从小到大枚举两个素数,乘积就是a
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e6+10;
ll t,d;
ll primes[N],cnt;
bool st[N];
void get_primes(ll n){
for(int i=2;i<=n;i++){
if(!st[i]) primes[cnt++]=i;
for(int j=0;primes[j]<=n/i;j++){
st[primes[j]*i]= true;
if(i%primes[j]==0) break;
}
}
}
int main(){
get_primes(1e6);
cin>>t;
while (t--){
cin>>d;
vector<ll> v;
ll index=1;
for(int i=0;i<1e5;i++){
if(primes[i]-index>=d){
v.push_back(primes[i]);
index=primes[i];
}
if(v.size()>=2) break;
}
ll res=1;
for(auto x:v){
res*=x;
}
cout<<res<<endl;
}
return 0;
}