codeforces 1529 D.Kavi on Pairing Duty

题面

在这里插入图片描述

题意

给你一个n,坐标上有2n个点,间距为1,让你求出满足题意得方案数。

每两个点连接成一条线段,要求线段两两之间要么长度相等,要么一个线段被另一个线段包含

题解(找规律)

设ai表示,n=i 时有多少方案数

当n=1时,有1种情况,就是直接两个点连起来

当n=2时,有3种情况

先考虑存在包含,将最外的两个点连起来,这种情况下就递归回了a1,

然后再考虑不存在包含,每遇到一个点连一条线,发现可以 ; 每遇到两个点连一条线,发现可以,方案数+2;

当n=3时,6种情况

先考虑存在包含,将最外的两个点连起来,递归出a2 ; 将最外的点和倒数第二外的点连起来,递归出a1,

然后再考虑不存在包含,每遇到一个点连一条线,发现可以,每遇到两个点连一条线,发现不可以,每遇到3个点连一条线,发现可以,方案数+2;

当n=4时,有13种情况

先考虑存在包含,将最外的两个点连起来,递归出a3,将最外的点和倒数第二外的点连起来,递归出a2,将最外的点和倒数第三外的点连起来,将倒数第二外的点连起来,递归出a1

然后再考虑不存在包含,每遇到一个点连一条线,发现可以,每遇到两个点连一条线,发现可以,每遇到3个点连一条线,发现不可以,每遇到4个点连一条线,发现可以,方案数+3;

现在我们可以发现,an的值是由两部分组成的,一部分就是递归前面的部分a1+a2+a3+…+an-1,另一部分就是n的因子个数(包括本身)

代码

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
const int mod = 998244353;
int n;
ll cnt[N];
ll arr[N];  //前n项包含
ll res[N];

int main() {

    cin >> n;
    //打表求因子  O(nlogn)
    for (int i = 1; i <= n; i++) {
        for (int j = i; j <= n; j += i) {
            cnt[j]++;
        }
    }

    res[1] = 1, arr[1] = 1;
    for (int i = 2; i <= n; i++) {
        res[i] = (arr[i - 1] % mod + cnt[i] % mod) % mod;
        arr[i] = (arr[i - 1] % mod + res[i]) % mod;
    }
    cout << res[n] << endl;

    return 0;
}
  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

(xsj)

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值