usaco training 3.2 阶乘

原题链接

在这里插入图片描述

思路(因式分解,同余)

  1. 因为数据范围较大,阶乘直接计算会溢出。所以不能直接计算阶乘再输出右侧第一个非零数字。
  2. 为什么不能对每次结果保留 1 位,2 位呢?因为 n 的范围是 1 ~ 1000,乘积的最右侧非零数字的有时候不止受 1 位影响。
  3. 比如:
    24!=620448401733239439360000,最右侧非零数字为:6。24!=620448401733239439360000,最右侧非零数字为:6。
    25!=15511210043330985984000000。最右侧数字为4。不是6∗25结果的最右侧。25!=15511210043330985984000000。最右侧数字为4。不是6∗25结果的最右侧。
    6∗25的结果为150,而36∗25的结果为900,936∗25的结果为23400。6∗25的结果为150,而36∗25的结果为900,936∗25的结果为23400。
    所以只保留个位不行。
  4. 我们要求n! 去掉末尾的0 再mod 10,我们可以设n!末有k个0,那么就是 n!/10k %10,我们只需要统计因子中2和5出现的次数,然后取两者的最小值,就是末尾0的个数,去掉末尾0的个数,再把剩余的2,5乘到结果中即可,防止溢出,我们可以边乘边模。

AC代码

#include<bits/stdc++.h>

using namespace std;

int main() {

    int n;
    cin >> n;
    int res = 1;
    int cnt2 = 0, cnt5 = 0;
    for (int i = 1; i <= n; i++) {
        int shu=i;
        while (shu % 2 == 0) shu /= 2, cnt2++;
        while (shu % 5 == 0) shu /= 5, cnt5++;
        res = res * shu % 10;
    }
    int minn = min(cnt2, cnt5);
    for (int i = 1; i <= cnt2 - minn; i++) res=res * 2 % 10;
    for (int i = 1; i <= cnt5 - minn; i++) res=res * 5 % 10;
    cout << res % 10 << endl;

    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页