算法竞赛进阶指南---0x16(Trie) The xor-longest Path

该博客介绍了如何解决寻找一棵树中任意两点路径异或和最大的问题。通过DFS遍历树计算各节点到根的路径异或和,并利用Trie树(01字典树)来存储和查询这些异或和,从而找到最大值。文章通过代码实例详细解释了算法的实现过程。
摘要由CSDN通过智能技术生成

题面

在这里插入图片描述

输入样例

4
0 1 3
1 2 4
1 3 6

输出样例

7

在这里插入图片描述

题解

在这里插入图片描述

  1. 如图,给定一颗树(不一定是二叉树),树中每条边都有对应的权值,任意两个点都是能互相到达的,让我们找两个点路径异或和最大,现在一看到异或和最大就想到了Trie,哈哈哈 ,看图,任取两个点a,b 对于ab两点之间的路径异或和我们可以分成两部分,就是他们分别到根节点路径和(图中蓝红两部分),然后将这两部分异或,就可以得到结果
  1. 那么如何找两点的最大呢,对于图中的树,我们可以用 dfs 算出所有点到根节点路径的异或和,用a数组存储,然后这样就转化成01异或和模板了(具体点这里),就是将这些存储的值建成一颗01字典树,对于每个ai,我们在字典树中找到异或最大,然后和结果比较更新答案即可

代码

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>

using namespace std;
const int N = 2e5 + 10;

int n;
//数组模拟邻接表存树
int h[N], e[N], c[N], ne[N], cnt;
bool st[N];
int a[N];
//Trie的存储
int tr[N * 30][2], id[N * 31], idx;

//添加a->b的边
void add(int u, int v, int w) {
    e[cnt] = v;
    c[cnt] = w;
    ne[cnt] = h[u];
    h[u] = cnt;
    cnt++;
}

//树的遍历
void dfs(int u, int sum) {
    a[u] = sum;
    st[u] = true;
    for (int i = h[u]; i != -1; i = ne[i]) {
        int j = e[i];
        if (!st[j]) dfs(j, sum ^ c[i]);
    }
}

//Trie的插入
void insert(int x) {
    int p = 0;
    for (int i = 31; i >= 0; i--) {
        int v = x >> i & 1;
        if (!tr[p][v]) tr[p][v] = ++idx;
        p = tr[p][v];
    }
    id[p] = x;
}

//Trie的查询
int query(int x) {
    int p = 0;
    for (int i = 31; i >= 0; i--) {
        int v = x >> i & 1;
        if (tr[p][v ^ 1]) p = tr[p][v ^ 1];
        else p = tr[p][v];
    }
    return x ^ id[p];
}

int main() {

    memset(h, -1, sizeof h);

    cin >> n;
    for (int i = 1; i < n; i++) {
        int u, v, w;
        cin >> u >> v >> w;
        add(u, v, w);
        add(v, u, w);
    }

    dfs(0, 0);


    for (int i = 0; i < n; i++) insert(a[i]);

    int res = 0;
    for (int i = 0; i < n; i++) res = max(res, query(a[i]));

    cout << res << endl;

    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值