题面
输入样例
4
0 1 3
1 2 4
1 3 6
输出样例
7
题解
- 如图,给定一颗树(不一定是二叉树),树中每条边都有对应的权值,任意两个点都是能互相到达的,让我们找两个点路径异或和最大,
现在一看到异或和最大就想到了Trie,哈哈哈,看图,任取两个点a,b 对于ab两点之间的路径异或和我们可以分成两部分,就是他们分别到根节点路径和(图中蓝红两部分),然后将这两部分异或,就可以得到结果
- 那么如何找两点的最大呢,对于图中的树,我们可以用 dfs 算出所有点到根节点路径的异或和,用a数组存储,然后这样就转化成01异或和模板了(具体点这里),就是将这些存储的值建成一颗01字典树,对于每个ai,我们在字典树中找到异或最大,然后和结果比较更新答案即可
代码
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 2e5 + 10;
int n;
//数组模拟邻接表存树
int h[N], e[N], c[N], ne[N], cnt;
bool st[N];
int a[N];
//Trie的存储
int tr[N * 30][2], id[N * 31], idx;
//添加a->b的边
void add(int u, int v, int w) {
e[cnt] = v;
c[cnt] = w;
ne[cnt] = h[u];
h[u] = cnt;
cnt++;
}
//树的遍历
void dfs(int u, int sum) {
a[u] = sum;
st[u] = true;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (!st[j]) dfs(j, sum ^ c[i]);
}
}
//Trie的插入
void insert(int x) {
int p = 0;
for (int i = 31; i >= 0; i--) {
int v = x >> i & 1;
if (!tr[p][v]) tr[p][v] = ++idx;
p = tr[p][v];
}
id[p] = x;
}
//Trie的查询
int query(int x) {
int p = 0;
for (int i = 31; i >= 0; i--) {
int v = x >> i & 1;
if (tr[p][v ^ 1]) p = tr[p][v ^ 1];
else p = tr[p][v];
}
return x ^ id[p];
}
int main() {
memset(h, -1, sizeof h);
cin >> n;
for (int i = 1; i < n; i++) {
int u, v, w;
cin >> u >> v >> w;
add(u, v, w);
add(v, u, w);
}
dfs(0, 0);
for (int i = 0; i < n; i++) insert(a[i]);
int res = 0;
for (int i = 0; i < n; i++) res = max(res, query(a[i]));
cout << res << endl;
return 0;
}