acwing 321 棋盘分割

这篇博客介绍了如何使用记忆化搜索解决二维空间内区域分割问题,通过计算剩余部分的值并应用动态规划策略,优化切割路径以最小化误差平方根。它展示了如何在给定前缀和矩阵的基础上进行高效的计算,并在main函数中给出了实际应用实例。
摘要由CSDN通过智能技术生成

题面

在这里插入图片描述

题解(记忆化搜索)

在这里插入图片描述

代码

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>

using namespace std;
const int N = 9, M = 15;
const int INF = 1e9;

int n, m = 8;
int s[N][N];  //二维前缀和
double f[N][N][N][N][M];
double X;  //平均值

//留下部分的值
double get(int x1, int y1, int x2, int y2) {
    double sum = s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1] - X;
    return (double) sum * sum / n;
}

//记忆化搜索
double dp(int x1, int y1, int x2, int y2, int k) {
    double &v = f[x1][y1][x2][y2][k];
    if (v >= 0) return v;  //说明已经计算过
    if (k == 1) return v = get(x1, y1, x2, y2); //不再分割的值
    v = INF;
    for (int i = x1; i < x2; i++) {  //横向切割
        v = min(v, dp(x1, y1, i, y2, k - 1) + get(i + 1, y1, x2, y2));  //取上继续切计算下边
        v = min(v, dp(i + 1, y1, x2, y2, k - 1) + get(x1, y1, i, y2)); //取下继续切计算上边
    }

    for (int i = y1; i < y2; i++) {  //纵向切割
        v = min(v, dp(x1, y1, x2, i, k - 1) + get(x1, i + 1, x2, y2)); //取左继续切计算右边
        v = min(v, dp(x1, i + 1, x2, y2, k - 1) + get(x1, y1, x2, i));//取右继续切计算左边
    }
    return v;
}


int main() {

    cin >> n;
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= m; j++) {
            cin >> s[i][j];
            s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
        }
    }

    X = (double) s[m][m] / n;
    memset(f, -1, sizeof f);
    printf("%.3lf\n", sqrt(dp(1, 1, m, m, n)));

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值