[题解] CF 1528B Kavi on Pairing Duty

[题解] CF 1528B Kavi on Pairing Duty 动态规划+简单数论

题目链接
在这里插入图片描述
这是题目给出的部分样例。
让我们仔细看第 2 2 2个和第 7 7 7个。好像第 7 7 7个内层和第 2 2 2个完全一样?
这让我们反应过来,好像可以 d p dp dp
我们经过进一步的推理可以发现:
设第 1 1 1个点和第 x x x个点相连,那么对于有端点在 [ x + 1 , 2 n ] [x+1,2n] [x+1,2n]的线段,
我们发现,如果这个线段的左端点在 [ 1 , x ] [1,x] [1,x]之内,那么这两个线段必相交,故长度一定相等;
如果这个线段的左端点不在 [ 1 , x ] [1,x] [1,x]内部,那么他们两个的长度还是必须相等。
有了这个结论,我们就能顺利的推式子了。
d p [ i ] dp[i] dp[i]为由 2 i 2i 2i个点时总的方案数,那么我们考察与第 1 1 1个节点相连的边的长度 l e n len len:(这里我们仍然应用上个结论中的点 x x x)
C a s e 1 :   l e n ≥ n + 1 Case 1: \ len \ge n+1 Case1: lenn+1,那么对于在 x x x右边的点显然左端点只能在 [ 1 , x ] [1,x] [1,x]以内。把所有的在 [ x + 1 , 2 n ] [x+1,2n] [x+1,2n]的点操作完之后,我们发现中线还胜了一部分点没有配对,这时候只需要利用之前的状态就行了。
再通过观察样例,可以知道所有 l e n ∈ [ n + 1 , 2 n − 1 ] len \in [n+1,2n-1] len[n+1,2n1]产生的贡献为 ∑ i = 1 n − 1 d p [ i ] \sum_{i=1}^{n-1}dp[i] i=1n1dp[i]
显然需要用前缀和优化。
C a s e 1 :   l e n ≤ n Case 1: \ len \le n Case1: lenn,那么根据我们之前的结论和观察样例,所有的线段长度一定一样,不管是和第 1 1 1个相交的还是不相交的。
我们在仔细观察样例,可以发现左端点在 [ 1 , x − 1 ] [1,x-1] [1,x1]的线段构成一个小块,长度为 2 ∗ l e n 2*len 2len。如果想要为 d p [ i ] dp[i] dp[i]做贡献,必有 2 ∗ l e n ∣ 2 ∗ n 2*len|2*n 2len2n,即 l e n ∣ n len|n lenn故此时能够产生的总贡献为 d ( n ) d(n) d(n).
综上所述,可以推出来这个式子: d p [ n ] = ∑ i = 1 n − 1 d p [ i ] + d ( n ) dp[n] = \sum_{i=1}^{n-1}dp[i]+d(n) dp[n]=i=1n1dp[i]+d(n)
最后用样例检查了一下这个式子,发现没问题。
用线性筛筛出 d d d,时间复杂度 O ( n ) O(n) O(n)

#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
using namespace std;

const double eps = 1e-10;
const double pi = acos(-1.0);
const int maxn = 1e6 + 10;
const ll mod = 998244353;

int n;
ll dp[maxn];
ll sum[maxn];

int p[maxn],cnt;
int a[maxn];//i的最小素因子次数
int d[maxn];//约数个数
bool isp[maxn];

void getp(){
	isp[1] = 1;
	d[1] = 1;
	for(int i = 2; i < maxn; i++){
		if(!isp[i]){
			p[++cnt] = i;
			a[i] = 1;
			d[i] = 2;
		}
		for(int j = 1; j <= cnt && i*p[j] < maxn; j++){
			isp[i*p[j]] = 1;
			if(i%p[j] == 0){
				a[i*p[j]] = a[i]+1;
				d[i*p[j]] = d[i]/(a[i]+1)*(a[i]+2);
				break;
			}
			else{
				a[i*p[j]] = 1;
				d[i*p[j]] = 2*d[i];
			}
		}
	}
}

void solve(){
	getp();
	scanf("%d",&n);
	dp[1] = sum[1] = 1;
	for(int i = 2; i <= n; i++){
		dp[i] = (sum[i-1]+d[i]) % mod;
		sum[i] = (sum[i-1]+dp[i]) % mod;
	}
	printf("%lld\n",dp[n]);
}

int main()
{
	solve();
	return 0;
}
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值