命令中/bin/sh -c 参数

本文探讨了在Linux环境下,如何使用/bin/sh-c命令解决sudo权限问题,特别是在重定向操作和shell脚本输出中遇到的权限不足错误。通过具体实例,讲解了/bin/sh-c和tee命令的使用方法,以及它们在提升命令执行权限中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/bin/sh -c的必要性

引用:
https://blog.csdn.net/qq_34562093/article/details/89948303

用法

一、

比如要向 test.asc 文件中随便写入点内容,可以:
$ echo “信息” >> test.csv
如果将 test.asc 权限设置为只有 root 用户才有权限进行写操作:
$ sudo chown root.root test.csv
然后,我们使用 sudo 并配合 echo 命令再次向修改权限之后的 test.asc 文件中写入信息:
$ sudo echo “hahah” >> test.csv
-bash: test.asc: Permission denied
这时可以看到 bash 拒绝这么做,说是权限不够。这是因为重定向符号 “>” 和 “>>” 也是 bash 的命令。我们使用 sudo 只是让 echo 命令具有了 root 权限,但是没有让 “>” 和 “>>” 命令也具有 root 权限,所以 bash 会认为这两个命令都没有像 test.csv文件写入信息的权限。
解决这一问题的途径有两种。

第一种是利用 “sh -c” 命令,它可以让 bash 将一个字串作为完整的命令来执行,这样就可以将 sudo 的影响范围扩展到整条命令。具体用法如下:
$ sudo /bin/sh -c ‘echo “hahah” >> test.asc’

另一种方法是利用管道和 tee 命令,该命令可以从标准输入中读入信息并将其写入标准输出或文件中,具体用法如下:
$ echo “hahah” | sudo tee -a test.asc
注意,tee 命令的 “-a” 选项的作用等同于 “>>” 命令,如果去除该选项,那么 tee 命令的作用就等同于 “>” 命令

二、

在一个shell脚本中如果有多个echo命令,如果不适用/bin/sh -c执行脚本,那么在java中使用BufferedReader获取脚本的输出时,只能获取到第一个echo的输出,使用/bin/sh -c则能获取到所有的echo输出。

例子

作用:让 bash 将一个字符串作为完整的命令来执行

问题:

执行命令"sudo echo “kettle” >> nohup.log"报错

-bash: nuhup.log: Permission denied

原因:

命令中含有echo 和>>两条bash命令,而sudo只会给后面的第一个命令赋予root权限,而">>"没有权限

解决:

使用/bin/bash -c指定将命令转为一个完整命令执行

$ sudo /bin/bash -c ‘echo “kettle” >> nohup.log’

扩展:

#!/bin/sh是#!/bin/bash的缩减版

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值