矩阵乘法的计算

这里先说一下整数的数据范围:

 

int:32位  -2147483648~2147483647。

long long 64位  9223372036854775807

unsigned long long 64位   18446744073709551615   一般在hash的时候用,溢出就相当于取模了

__int128  128位   相对于longlong位数变为原来的2倍了

 

通过这个函数就可以看出 ll 占用 8个字节 __128占用 16个字节

 

 

斐波那契的矩阵运算

1303. 斐波那契前 n 项和

大家都知道 Fibonacci 数列吧,f1=1,f2=1,f3=2,f4=3,…,fn=fn−1+fn−2f1=1,f2=1,f3=2,f4=3,…,fn=fn−1+fn−2。

现在问题很简单,输入 nn 和 mm,求 fnfn 的前 nn 项和 SnmodmSnmodm。

输入格式

共一行,包含两个整数 nn 和 mm。

输出格式

输出前 nn 项和 SnmodmSnmodm 的值。

数据范围

1≤n≤20000000001≤n≤2000000000,
1≤m≤10000000101≤m≤1000000010

输入样例:

5 1000

输出样例:

12

 

 

 

code:
 

#include<iostream>
#include<cstring>

using namespace std;

typedef long long ll;
const int N = 3;

int n, m;

void mul(int c[],int a[],int b[][N]){
    int temp[N] = {0};
    
    for(int j = 0;j < N; j ++){
        for(int k = 0;k < N ;k ++)
        {
            temp[j] = (temp[j] + (ll)a[k] * b[k][j]) % m;
        }
    }
    //都改变完了在改变f数组
    memcpy(c, temp, sizeof temp);
}

void mul(int c[][N],int a[][N], int b[][N]){
    int temp[N][N] = {0};//初始化
    
    for(int i =0 ;i < N;  i ++){
        for(int j = 0;j < N; j++){
            for(int k = 0; k <  N ;k ++){
                temp[i][j] = (temp[i][j] + (ll)a[i][k] * b[k][j]) % m;
            }
        }
    }
    memcpy(c, temp, sizeof temp);
}

int main()
{
    cin >> n >> m;
    
    int f[N] = {1, 1, 1};
    int a[N][N] = {
        {0, 1, 0},
        {1, 1, 1},
        {0, 0, 1}
    };
    n --;
    while(n){
        if(n & 1) mul(f, f, a);
        mul(a, a, a);
        n >>= 1;
        
    }
    
    
    cout << f[2] << endl;
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值