第六章 图 Graph
6.1 图的定义和基本术语:
图 G(V,E)--> Graph(Vertex,Edge);
V: 顶点(数据元素)的有穷非空集合
E: 边的有穷集合
无向图:每条边都是没有方向的
有向图:每条边都是有方向的
完全图:任意两个点都有一条边相连
无向完全图
N个顶点,N(N-1)/2条边
有向完全图
N个顶点,N(N-1)条边
稀疏图:有很少边或弧的图(e<nlogn)
稠密图:有较多边或弧的图
网:边/弧带权的图
网
邻接:有边/弧相连的两个顶点之间的关系
存在(Vi,Vj)则Vi和Vj互为邻接点(无向图)
存在 <Vi,Vj> 则称Vi邻接到Vj,Vj邻接于Vi (有向图)
关联(依附):边/弧与顶点之间的关系
存在(Vi,Vj)/<Vi,Vj>,则称该边/弧关联于Vi和Vj
顶点的度(TD):与该顶点相关联的边的数目
在有向图中,顶点的度等于该顶点的入度与出度之和
入度:(ID)
出度:(OD)