Python基础--set集合 1、集合的定义set_ls = set()2、集合添加元素set_ls.add(1)3、集合删除元素# 删除制定的某个元素set_ls.remove(1)# 任意删除某个元素,可以返回l1 = set_ls.pop()# 删除集合中的全部元素set_ls.clear()
Mac 下载安装go之后 go version显示zsh: command not found: go 按照安装教程,将安装包下载,一路安装之后,终端查看go version,显示zsh:command not found解决办法:1、在终端进入目录:cd /usr/local 查看你的 go 是否存在因为图中显示其中含有go,所以说明安装成功2、再进入 cd /usr/local/bin 查看引用是否存在图中可以看出没有go的文件3、利用 In 命令,在终端设置建立一个同步的链接:sudo ln -fs /usr/local/go/bin/go /usr/local/bin/go现.
git pull报错error: Your local changes to the following files would be overwritten by merge: 转发: https://blog.csdn.net/misakaqunianxiatian/article/details/51103734?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefau
MacBook上下载安装Mysql 本文结合现有的方法,进行了融合。一、下载官网下载mysql百度搜索mysql,然后进入官网选择downloads,下滑至页面最底端,选择下图中的第一个选项 MySQL Community Server进入下面页面,选择第一个DMG文件,进行下载。二、安装下载完成后进行安装,双击下载的文件,一直点击继续,就可以完成安装,但最后会弹出一个对话框要求输入root的临时密码(建议设置完成后备忘录一下,防止之后忘记引起不必要的麻烦)三、启动SQL1、启动台进入 系统偏好设置,点击MySQL
Python剑指offer 06 剑指 Offer 06. 从尾到头打印链表 输入一个链表的头节点,从尾到头反过来返回每个节点的值(用数组返回)。示例 1:输入:head = [1,3,2]输出:[2,3,1]解题思路:1、定义一个空列表,判断头是否为空,不为空则存入,为空则直接返回[]2、然后将head后的第一个结点赋值给a,判断是否存在,存在则存入列表,并继续next提交结果如下代码:# Definition for singly-linked list.# class ListNode:# def __init__(self, x):#
Python剑指offer 05 替换空格 请实现一个函数,把字符串 s 中的每个空格替换成"%20"。示例 1:输入:s = “We are happy.”输出:“We%20are%20happy.”两种方法:1、使用replace函数直接处理m= s.replace(' ','%20')return m2、使用列表将原列表的元素再重写誊抄一遍进去 ls=[] for i in s: if i ==' ': ls.append('%20')
Python 剑指offer 03 数组中重复的数字 03 找出数组中重复的数字。在一个长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。示例 1:输入:[2, 3, 1, 0, 2, 5, 3]输出:2 或 3超时答案:本来使用了count函数来统计,大于等于2,则存入一个新的列表,然后set后list,取出其中的第一个元素,但是提交之后超时了。在题解中看到了直接使用集合处理的方法首先定义一个空集合,然后遍历数组
Python:PAT-1002 A+B for Polynomials(多项式A+B) This time, you are supposed to find A+B where A and B are two polynomials.Sample Input:2 1 2.4 0 3.22 2 1.5 1 0.5Sample Output:3 2 1.5 1 2.9 0 3.2题干的意思:求两个多项式的和,需要注意的是,输出时要按照输入的格式,指数从高到低的顺序输出,并且与题干一样保留一位小数题解是一位大神写的,自己的想法很冗杂,看完大神的写法,醍醐灌顶,感慨脑子是个好东西!
卡特兰数-Python实现(自用) n=int(input())a=[0]*3333 #初始化一个列表a[0]=1 #第一项等于1for i in range(1,n+1): for j in range(i): a[i]+=a[j]*a[i-1-j]print(a[n])
Python-蓝桥杯模拟题:螺旋矩阵 矩阵效果如下:代码:n, m = map(int, input().split())r, c = map(int, input().split())anslist = [[0 for _ in range(m)] for _ in range(n)] #填充数字vis = [[0 for _ in range(m)] for _ in range(n)] #标记走过的位置i=1x=0y=0while i <n*m: while y<m and vis[x][.
Python-迷宫题(非BFS) 在下图的迷宫中,找到一条解题路径。0可以走,1不可以走。maze=[ [1,1,1,1,1,1,1,1,1,1], [1,0,1,1,0,0,0,1,1,1], [1,0,1,1,1,1,0,0,1,1], [1,0,1,0,0,0,0,0,1,1], [1,0,1,0,1,1,1,1,1,1], [1,0,0,0,1,1,1,1,1,1], [1,1,1,0,0,0,0,1,1,1], [1,1,1,0,0,1,0,1,1,1],
Python-动态规划之蒜头君爬楼梯2 蒜头君很喜欢爬楼梯,这一次,他获得了一个特异功能,每次可以跳跃任意奇数的阶梯。比如他初始在楼底,跨越一个阶梯到达 11 号阶梯,或者跨越 33 个楼梯到达 33 号阶梯。为了选出一种最轻松的爬楼梯的方式,蒜头君想把所有不同的到达楼顶的方式都尝试一遍。对于一共有 nn 个阶梯的楼梯,蒜头君一共有多少总方法从楼底到达楼顶。由于最后答案可能很大,输出最后的答案对 100007100007 取模的结果。输入格式第一行输入一个整数 n(1 \le n \le 1000)n(1≤n≤1000)。输出格式输出
Python动态规划之爬楼梯 假设每次只能爬1级或2级台阶,如果要爬到n级台阶,那有多少种爬法?解题思路:假设需要爬到第5级台阶,那这个问题可以分解为4+1 或者 3+2 (即从第4级台阶,走一步上升到第5级;或者从第3级台阶,走两步上升到第5级)。因此,第五级台阶的解法数量就转化为了第四级的解法数量加上第三级的解法数量。这样可以看出,这个问题等同于斐波那契数列。dp[i]=dp[i-1]+dp[i-2]解题代码如下:n=int(input())dp=[1 for i in range(n+1)] #记录每一层阶梯的可
Python动态规划之凑零钱 设有1,2,5三种面值的零钱,凑齐11元,最少需要几枚硬币使用动态规划来解决这个问题。一、递归法#凑零钱def coinChange(coins,amount): def dp(n): if n==0: #base case return 0 if n<0: return -1 res=float('inf') #由于获取的值为最少需要几枚硬币,所以初始化为无穷大 f
Python 动态规划之斐波那契数列(自用) 0 1 1 2 3 5 8…#斐波那契n=int(input())memo=[0 for i in range(n)] #用来存储上一步的结果for i in range(n): if i<2: f=i else: f=memo[i-1]+memo[i-2] memo[i]=fprint(memo)
Python-蓝桥杯:等差数列 1、先将输入的等差数列的数字存入数组中,并对其进行排序2、计算邻近数值的差,并记录最小的差值,为等差数列的差3、用最大的项除以最小的项,然后加1,就是一共有多少项n=int(input())ls=list(map(int,input().split()))ls.sort()ran=100000for i in range(1,len(ls)): rang=int(ls[i]-ls[i-1]) if rang<ran: ran=rangcount=in..
Python-蓝桥杯:完全二叉树的权值 深度为K的完全二叉树,有2**n-1个节点所以可以使用Python自带的math.log() 函数来求以2为底的二叉树的深度。m为n个节点所对应的二叉树的深度。m=(int(math.log(n+1,2)))import mathn=int(input())ls=list(map(int,input().split()))m=(int(math.log(n+1,2)))result=0deep=0for i in range(m): res=sum(ls[2**i-1:2*..