PCRaster配置教程

step1:anaconda安装

anaconda安装教程

step2:PCRaster环境配置

(1)在开始菜单中找到并打开prompt
在这里插入图片描述
(2)输入以下代码,将pcraster创建在一个名为“pcraster”的环境中,并同时向环境添加spyder、matplotlib库,用于后续分析和制图。

conda create --name pcraster -c conda-forge python pcraster spyder matplotlib

(3)回车后等待出现以下界面,输入:y,回车开始进行安装
在这里插入图片描述相应库正在安装
在这里插入图片描述大约需要十五分钟(博主网速比较慢)左右出现下图所示界面表示安装完成(有两处DEBUG但是不影响运行)
在这里插入图片描述

step3:pycharm安装

pycharm安装教程从第二部分pycharm安装看起,建议安装社区版(阉割的,懂的都懂哈哈哈)
在这里插入图片描述

step4:将anaconda环境配置到pycharm中

首先,点击files----new Project新建一个项目
在这里插入图片描述
然后,在新建项目界面,设置项目路径和编译器(这里的编译器指的就是我们之前创建的pcraster)随后,设置项目路径
在这里插入图片描述设置编译器
点击下拉键,并按图示(下图)顺序操作,打开anaconda环境
在这里插入图片描述
按照图示(下图)顺序将环境切换为pcraster,“确定”
在这里插入图片描述在这里插入图片描述“create”后,等待环境加载,当右下角出现红框所示时,环境已配置完毕。
在这里插入图片描述
当输入 import pc,可以自动弹出pcraster时,证明安装成功。
在这里插入图片描述

对于苍穹外卖项目的图片处理,在第三天的任务或教程可能涉及到了解和实践如何优化图片上传流程、确保图片质量以及提升用户体验等方面的知识。虽然没有直接找到针对苍穹外卖项目第三天的具体任务描述,但可以根据一般的学习路径推测出一些合理的教学内容。 ### 方法一:学习图片压缩算法 了解不同的图片格式及其适用场景,比如JPEG适用于照片而PNG更适合图标等透明背景的图像。研究常见的图片压缩算法,如WebP,它可以在保证视觉效果的同时减少文件大小,从而加快网页加载速度。 ### 方法二:实现前端图片预览功能 编写代码片段用于在用户选择本地图片后立即显示缩略图给用户查看。这通常涉及到HTML5 File API 和 JavaScript Canvas API的应用。 ```javascript function previewFile(input) { var file = input.files[0]; if (file) { var reader = new FileReader(); reader.onload = function(e) { document.getElementById('preview').src = e.target.result; } reader.readAsDataURL(file); } } ``` ### 方法三:服务器端图片处理服务集成 探索云存储解决方案或者第三方APIs提供的图片处理能力,例如阿里云OSS、腾讯云COS或是Imgur这样的平台。这些服务不仅提供安全可靠的存储空间,还支持自动调整尺寸、水印添加等功能。 ### 方法四:测试与性能评估 创建一系列测试用例来验证新加入的功能是否正常工作,并测量其对应用整体性能的影响。考虑使用自动化工具来进行负载测试,检查大规模并发请求下的系统稳定性。 由于具体的课程安排可能会有所不同,建议查阅官方文档或联系讲师获取最准确的日程信息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RuiXuan Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值