《Relay IR的基石:expr.h 中的表达式类型系统剖析》

TVM Relay源码深度解读

文章目录


一 、从Constant看Relay表达式的设计哲学

  在TVM的Relay IR中,即使是看似简单的常量表达式relay.const(1),其背后也隐藏着整个类型系统的精妙设计。让我们从include/tvm/relay/expr.h中的Constant类入手,逐步拆解…"

1. 类定义概述

类名继承关系角色关键特性
ConstantNodepublic ExprNode常量表达式的实际数据存储包含常量数据(NDArray)、类型信息,并实现属性访问、哈希和相等比较逻辑。
Constantpublic RelayExpr常量表达式的智能指针封装提供用户友好的构造函数和访问方法,隐藏内存管理细节。

2. ConstantNode 详解

class ConstantNode : public ExprNode {
 public:
  /*! \brief The data of the tensor */
  runtime::NDArray data;

  /*! \return The corresponding tensor type of the data */
  TensorType tensor_type() const;

  /*! \return Whether it is scalar(rank-0 tensor) */
  bool is_scalar() const { return data->ndim == 0; }

  void VisitAttrs(tvm::AttrVisitor* v) {
    v->Visit("data", &data);
    v->Visit("span", &span);
    v->Visit("mdata", &mdata);
    v->Visit("_checked_type_", &checked_type_);
  }

  bool SEqualReduce(const ConstantNode* other, SEqualReducer equal) const {
    return equal(data, other->data);
  }

  void SHashReduce(SHashReducer hash_reduce) const { hash_reduce(data); }

  static constexpr const char* _type_key = "relay.Constant";
  TVM_DECLARE_FINAL_OBJECT_INFO(ConstantNode, ExprNode);
};

1. 核心成员

  • data (runtime::NDArray)

    • 存储常量张量的实际数据(如权重、偏置等),TVM 使用 NDArray 统一表示多维数组。
    • 示例:卷积层的权重矩阵会被存储在这里。
  • tensor_type()

    • 根据 data 的维度(shape)和数据类型(dtype)自动生成对应的 TensorType
    • 用途:类型推断时确定常量的类型。
  • is_scalar()

    • 判断常量是否为标量(0维张量),如 data->ndim == 0

2. 关键方法

  • VisitAttrs

    • 实现属性的序列化/反序列化,支持以下字段:
      v->Visit("data", &data);          // 张量数据
      v->Visit("span", &span);         // 源码位置信息
      v->Visit("mdata", &mdata);       // 元数据(如调试信息)
      v->Visit("_checked_type_", &checked_type_);  // 类型检查后的类型
      
  • SEqualReduceSHashReduce

    • 结构化相等比较:比较两个 ConstantNodedata 是否相同(用于优化中的常量折叠)。
    • 哈希计算:基于 data 生成哈希值(用于快速查找重复常量)。

3. 类型系统注册

TVM_DECLARE_FINAL_OBJECT_INFO(ConstantNode, ExprNode);
  • _type_key = "relay.Constant":唯一标识常量节点类型。
  • FINAL:禁止继承,确保常量节点的行为不可被修改。

3. Constant 详解

class Constant : public Expr {
 public:
  /*!
   * \brief The constructor
   * \param data The data of the constant tensor.
   * \param span The source span of the expression.
   */
  TVM_DLL explicit Constant(runtime::NDArray data, Span span = Span(), MetaData mdata = MetaData());

  TVM_DEFINE_OBJECT_REF_METHODS(Constant, RelayExpr, ConstantNode);
};

1. 核心功能

  • 构造函数

    explicit Constant(runtime::NDArray data, Span span = Span(), MetaData mdata = MetaData());
    
    • 接收 NDArray 数据,构造一个常量表达式。
    • 示例
      # Python 前端等价代码
      data = np.array([1, 2, 3], dtype="float32")
      const_expr = relay.Constant(tvm.nd.array(data))
      
  • 智能指针方法

    TVM_DEFINE_OBJECT_REF_METHODS(Constant, RelayExpr, ConstantNode);
    

    展开后提供:

    • operator->():直接访问 ConstantNode 成员(如 const_expr->data)。
    • get():获取底层 ConstantNode 指针。
    • 自动内存管理(通过 ObjectRef 的引用计数)。

二. 核心内容概述

  在TVM源码中,include/tvm/relay/expr.hRelay IR(中间表示)的核心头文件,定义了所有Relay表达式的基础数据结构和类型系统。它是实现TVM高层计算图表示的关键组成部分。以下是该文件的详细解析:
相关重要文件

文件路径关联内容
include/tvm/relay/type.h类型系统(TensorType等)
include/tvm/relay/op.h运算符定义
include/tvm/relay/adt.h代数数据类型支持
src/relay/ir/expr.cc表达式方法的实现

include/tvm/relay/expr.h文件主要包含:

  • (1) Relay表达式基类RelayExpr/RelayExprNode
  • (2) 所有具体表达式类型的声明(如变量、常量、函数调用等)
  • (3) 表达式类型的遍历和转换接口
  • (4) 类型系统和属性访问的支持

(1) Relay表达式基类

class RelayExprNode : public BaseExprNode { /*...*/ };
class RelayExpr : public BaseExpr { /*...*/ };
  • 角色:所有Relay表达式的公共基类
  • 功能
    • 提供类型系统支持(通过checked_type_字段)
    • 实现属性访问(VisitAttrs
    • 支持结构化相等比较(SEqualReduce

1. RelayExprNode 和 RelayExpr 的区别与用法

  RelayExprNode 是 Relay 表达式的实际实现类,是一个 C++ 类,包含了表达式的所有数据和功能实现。它是所有 Relay 表达式类型的基类。
  RelayExpr 是一个智能指针(relay::Expr),它指向 RelayExprNode 或其子类的实例。它提供了对 RelayExprNode 的安全访问和管理。

2. 主要区别

特性RelayExprNodeRelayExpr
类型C++ 类智能指针(std::shared_ptr 的封装)
生命周期管理需要手动管理自动管理
使用方式通常不直接使用,作为实现细节用户主要交互的接口
继承关系作为基类定义表达式结构作为访问接口

3. 使用模式

在 TVM 中,通常的模式是:

  1. 定义一个继承自 RelayExprNode 的具体表达式节点类
  2. 使用 RelayExpr 作为这些节点的引用
例子1:常量表达式
// 创建一个常量表达式
auto const_node = relay::ConstantNode::make(tvm::runtime::NDArray::Zeros(...));
RelayExpr const_expr = const_node;

// 通常更简洁的写法
RelayExpr const_expr = relay::Constant(tvm::runtime::NDArray::Zeros(...));
例子2:变量表达式
// 创建一个变量表达式
auto var_node = relay::VarNode::make("x", relay::Type());
RelayExpr var_expr = var_node;

// 或者更简洁地
RelayExpr var_expr = relay::Var("x", relay::Type());
例子3:函数应用
// 创建函数应用表达式
RelayExpr func = ...; // 某个函数
RelayExpr arg = ...;  // 某个参数
auto call_node = relay::CallNode::make(func, {arg});
RelayExpr call_expr = call_node;

// 或者
RelayExpr call_expr = relay::Call(func, {arg});

4. 实际使用建议

  1. 用户代码:在大多数情况下,你应该使用 RelayExpr 而不是直接操作 RelayExprNode

  2. 扩展 Relay:如果你想定义新的表达式类型,需要继承 RelayExprNode 并实现相应接口。

  3. 类型转换:可以使用 as<T> 方法将 RelayExpr 向下转换为特定类型的节点指针:

RelayExpr expr = ...;
if (const auto* call = expr.as<CallNode>()) {
  // 现在可以访问 CallNode 的特定成员
  call->op;
  call->args;
}
  1. 创建新表达式:TVM 提供了辅助函数来创建表达式,通常以节点类型名去掉 “Node” 命名(如 relay::Var() 创建 VarNodeRelayExpr)。

这种分离设计使得 Relay IR 既灵活又安全,同时保持了良好的性能特性

(2) 具体表达式类型

表达式类型说明关键成员/方法
VarNode变量(输入/中间结果)String name_hint, Type type_annotation, Id vid
ConstantNode常量张量(如模型权重)runtime::NDArray data, tensor_type(), is_scalar()
CallNode函数/运算符调用Expr op, Array<Expr> args, Attrs attrs, Array<Type> type_args
LetNodeLet绑定(实现变量作用域)Var var, Expr value, Expr body
TupleNode元组结构(多返回值)Array<Expr> fields
TupleGetItemNode从元组中获取元素Expr tuple, int index
IfNode条件表达式Expr cond, Expr true_branch, Expr false_branch
OpNode基本运算符(如add/concat)通过Op::Get("op_name")获取
FunctionNode函数定义(在function.h中声明,但属于表达式)Array<Var> params, Expr body, Type ret_type, Array<TypeVar> type_params
RefCreateNode创建可变引用(用于状态更新)Expr value
RefReadNode读取引用值Expr ref
RefWriteNode更新引用值Expr ref, Expr value
ConstructorNode代数数据类型(ADT)的构造器(在adt.h中声明)String tag, Array<Type> inputs
MatchNode模式匹配(ADT处理)Expr data, Array<Clause> clauses
TempExprNode临时表达式(用于优化过程中的中间表示)通常作为优化Pass的中间载体
GlobalVarNode全局函数引用(跨模块调用)String name_hint
SeqExprNode顺序执行多个表达式(类似语句块)Array<Binding> bindings, Expr body

1. 表达式类型 VarNode举例子

include/tvm/relay/expr.h

class Var;
/*! \brief Container for Var */
class VarNode : public ExprNode {
 public:
  /*!
   * \brief The unique identifier of the Var.
   *
   * vid will be preserved for the same Var during type inference
   * and other rewritings, while the VarNode might be recreated
   * to attach additional information.
   * This property can be used to keep track of parameter Var
   * information across passes.
   */
  Id vid;
  /*!
   * \brief type annotaion of the variable.
   * This field records user provided type annotation of the Var.
   * This field is optional and can be None.
   */
  Type type_annotation;

  /*! \return The name hint of the variable */
  const String& name_hint() const { return vid->name_hint; }

  void VisitAttrs(tvm::AttrVisitor* v) {
    v->Visit("vid", &vid);
    v->Visit("type_annotation", &type_annotation);
    v->Visit("span", &span);
    v->Visit("mdata", &mdata);
    v->Visit("_checked_type_", &checked_type_);
  }

  bool SEqualReduce(const VarNode* other, SEqualReducer equal) const {
    return equal(type_annotation, other->type_annotation) && equal.FreeVarEqualImpl(this, other);
  }

  void SHashReduce(SHashReducer hash_reduce) const {
    hash_reduce(type_annotation);
    hash_reduce.FreeVarHashImpl(this);
  }

  static constexpr const char* _type_key = "relay.Var";
  TVM_DECLARE_FINAL_OBJECT_INFO(VarNode, ExprNode);
};

class Var : public Expr {
 public:
  /*!
   * \brief The constructor
   * \param name_hint The name hint of a variable.
   * \param type_annotation The type annotation of a variable.
   * \param span The source span of the expression.
   */
  TVM_DLL Var(String name_hint, Type type_annotation, Span span = Span(), MetaData mdata = MetaData())
      : Var(Id(name_hint), type_annotation, span, mdata) {}

  /*!
   * \brief The constructor
   * \param vid The unique id of a variable.
   * \param type_annotation The type annotation of a variable.
   * \param span The source span of the expression.
   */
  TVM_DLL Var(Id vid, Type type_annotation, Span span = Span(), MetaData mdata = MetaData());

  TVM_DEFINE_OBJECT_REF_METHODS(Var, RelayExpr, VarNode);
};
1. 核心设计理念

VarNodeVar 共同实现了 Relay IR 的变量系统,采用 TVM 标准的 Object-ObjectRef 设计模式

  • VarNode:存储实际数据的节点类(继承自 ExprNode
  • Var:管理 VarNode智能指针包装类(继承自 Expr

2. 关键成员解析
(1) 核心字段
成员类型作用
vidId唯一标识符,跨 Pass 保持不变(即使节点被重建)
type_annotationType用户显式指定的类型注解(可空)
name_hint()String通过 vid->name_hint 获取的可读名称(非唯一)
spanSpan源码位置信息(用于错误定位)
mdataMetaData扩展元数据
(2) 特殊方法
方法功能
SEqualReduce结构化相等比较(用于优化 Pass 的重复检测)
SHashReduce哈希计算(支持快速查找)
VisitAttrs属性序列化/反序列化

3. 变量标识系统
(1) vid (Unique ID)
class IdNode : public Object {
 public:
  String name_hint;
  // ... 其他元数据
};
  • 核心特性
    • 通过 Id(name_hint) 构造,但系统会保证其唯一性
    • 即使优化 Pass 重建变量节点,vid 保持不变
    • 用于跨 Pass 跟踪参数变量(如梯度更新时识别同一参数)
(2) name_hint 与 vid 的关系
x = relay.var("input", shape=(1,3))  # 实际创建:
                                      # vid = Id("input_0x7f") (自动去重)
                                      # name_hint = "input" (用户友好)

4. 类型系统整合
(1) 类型注解流程
graph TD
    A[用户构造] -->|relay.var(..., dtype="float32")| B(type_annotation)
    B --> C[类型检查]
    C -->|更新| D(_checked_type_)
(2) 类型推导规则
  • type_annotation 存在:必须与实际使用类型兼容
  • 若为空:从上下文推断类型

5. 内存模型与跨语言交互
(1) C++ 层构造
// 方式1:通过 name_hint
Var x("data", TensorType({1,3}, DataType::Float(32)));

// 方式2:直接指定 Id
Var x(Id("data_0x7f"), TensorType({1,3}, DataType::Float(32)));
(2) Python 绑定
# Python 前端接口
x = relay.var(
    name="input",
    shape=(1,3),
    dtype="float32",
    span=SourceSpan(...)
)
(3) 对象生命周期
sequenceDiagram
    Python->>C++: relay.var() 创建请求
    C++->>Heap: 分配 VarNode
    C++->>Python: 返回 Var(ObjectRef)
    Python->>C++: 析构时触发引用计数-1

6. 关键应用场景
(1) 函数参数定义
def build_linear():
    x = relay.var("x", shape=(1,3))
    w = relay.var("w", shape=(3,2))
    b = relay.var("b", shape=(2,))
    y = relay.add(relay.matmul(x, w), b)
    return relay.Function([x, w, b], y)
(2) 优化 Pass 中的变量处理
// 在 ConstantFolding 中识别变量引用
if (const VarNode* var = expr.as<VarNode>()) {
    if (var_map.count(var->vid)) {
        // 替换为已知常量
    }
}
(3) 类型检查
// 检查变量类型是否匹配
bool CheckType(const VarNode* var, const Type& expected) {
    return var->checked_type().as<TensorType>()->dtype == expected;
}

7. 设计亮点总结
  1. 稳定性vid 保证变量在优化过程中的持久标识
  2. 灵活性type_annotation 支持显式/隐式类型指定
  3. 安全性TVM_DECLARE_FINAL_OBJECT_INFO 防止错误继承
  4. 可调试性spanname_hint 增强错误可读性
  5. 性能SEqualReduce/SHashReduce 优化图操作效率

8. 典型问题分析

Q: 为什么需要同时存在 vidname_hint
A: 分工不同:

  • name_hint:面向用户,提供可读性(允许重复)
  • vid:面向系统,保证唯一性和跨Pass一致性

Q: 何时会重建 VarNode
A: 典型场景:

  • 类型推断后附加 _checked_type_
  • 优化 Pass 中克隆表达式时保留原 vid 但新建节点

(3) TVM_DECLARE_BASE_OBJECT_INFO 宏详解

  这个宏是 TVM 类型系统的核心,用于在 C++ 中动态注册和管理对象的类型信息。它的核心作用是: 为每个类自动生成类型注册代码,使其能被 TVM 运行时识别和操作


1. 宏的参数

#define TVM_DECLARE_BASE_OBJECT_INFO(TypeName, ParentType)
  • TypeName:当前类名(如 ConstantNode
  • ParentType:父类名(如 ExprNode

2. 静态断言检查(防止非法继承)

static_assert(!ParentType::_type_final, "ParentObj marked as final");
  • 作用:如果父类被标记为 final(通过 _type_final),则禁止子类继承。

2. 运行时类型索引(RuntimeTypeIndex)

static uint32_t RuntimeTypeIndex() {
  // 检查子类槽位配置是否合法
  static_assert(TypeName::_type_child_slots == 0 || 
                ParentType::_type_child_slots == 0 ||
                TypeName::_type_child_slots < ParentType::_type_child_slots,
               "子类槽位数不能超过父类限制");

  // 如果已预分配类型ID,直接返回
  if (TypeName::_type_index != ::tvm::runtime::TypeIndex::kDynamic) {
    return TypeName::_type_index;
  }
  // 否则动态分配
  return _GetOrAllocRuntimeTypeIndex();
}
  • 功能:返回类的唯一类型 ID(uint32_t)。
  • 优化:优先使用预分配的 _type_index(性能更高),否则动态分配。

3. 动态分配类型索引(_GetOrAllocRuntimeTypeIndex)

static uint32_t _GetOrAllocRuntimeTypeIndex() {
  static uint32_t tidx = Object::GetOrAllocRuntimeTypeIndex(
      TypeName::_type_key,         // 类型名称字符串(如 "relay.Constant")
      TypeName::_type_index,       // 预分配的类型ID
      ParentType::RuntimeTypeIndex(), // 父类类型ID
      TypeName::_type_child_slots, // 为子类预留的槽位数
      TypeName::_type_child_slots_can_overflow // 是否允许超额
  );
  return tidx;
}
  • 作用:向 TVM 运行时注册类型,并分配唯一 ID。
  • 关键参数
    • _type_child_slots:限制子类数量(防止类型爆炸)。
    • _type_child_slots_can_overflow:为 true 时允许突破限制。

通俗版解释:TVM的类型身份证系统

你可以把TVM的类型系统想象成一个学校的学生管理系统,而TVM_DECLARE_BASE_OBJECT_INFO就是给学生(类)办身份证的机器:


1. 为什么要办身份证?
  • 每个学生(类)需要唯一学号(类型ID)
  • 需要知道他的班主任是谁(父类)
  • 防止有人冒充转校生(非法继承)
2. 办证过程(宏的作用)
// 给"小明同学"办证,班主任是"李老师"
TVM_DECLARE_BASE_OBJECT_INFO(小明, 李老师)

这个宏会自动做三件事:

  1. 检查家世清白

    static_assert(!李老师::是final班, "班主任明确不收新学生!");
    
    • 如果班主任声明"我们班不接收转学生",就报错
  2. 分配学号

    • 优先用预留的VIP学号(_type_index
    • 没有就现场摇号(_GetOrAllocRuntimeTypeIndex
  3. 登记亲属关系

    学号 = 教务处.登记(
     姓名:"小明",
     班主任:李老师.学号,
     可带小弟人数:3  // _type_child_slots
    );
    
3. 特殊班级(FINAL版)
TVM_DECLARE_FINAL_OBJECT_INFO(学霸班, 实验班)
  • 相当于在班级门口挂**“禁止转入”**牌子
  • 其他班同学想转学过来会直接报错
4. 实际有什么用?
  • 查身份证快obj->IsInstance<小明>() 比查户口本快
  • 安全转班obj.as<小明>() 能安全转换类型
  • 防止冒名顶替:禁止随便认爹(错误继承)

举个栗子🌰
# Python前端定义一个"汉堡店"类
@register_relay_node("food.HamburgerShop")
class HamburgerShopNode(ExprNode):
    _type_key = "food.HamburgerShop"
    _type_child_slots = 2  # 允许开2家分店

C++层通过这个宏:

  1. 给汉堡店分配类型ID(比如9527)
  2. 记录它的父类是ExprNode
  3. 允许最多2个子类(比如CheeseBurgerShopChickenBurgerShop

一句话总结

这个宏就是TVM给类发身份证+建家族档案的工具,让系统能:

  • ✅ 快速识别"你是谁"(类型检查)
  • ✅ 知道"你爸是谁"(继承关系)
  • ❌ 防止"乱认亲戚"(非法继承)

(4) 遍历接口

  void VisitAttrs(tvm::AttrVisitor* v) {
    v->Visit("data", &data);
    v->Visit("span", &span);
    v->Visit("mdata", &mdata);
    v->Visit("_checked_type_", &checked_type_);
  }

  VisitAttrs 是 TVM 中用于统一序列化、反序列化和属性访问的核心接口。以下是 ConstantNode 使用该函数的具体示例,涵盖 C++ 和 Python 场景:


1. C++ 场景示例

(1) 模型序列化(保存为JSON)
// 创建常量节点
runtime::NDArray arr = runtime::NDArray::Empty({2, 2}, DLDataType{kDLFloat, 32, 1}, DLContext{kDLCPU, 0});
ConstantNode* const_node = new ConstantNode();
const_node->data = arr;

// 序列化为JSON
JSONAttrVisitor visitor;
const_node->VisitAttrs(&visitor);  // 触发以下调用:
                                   // visitor.Visit("data", &data)
                                   // visitor.Visit("span", &span)...
std::string json = visitor.GetJSON();

输出JSON片段

{
  "type_key": "relay.Constant",
  "data": {"b64": "AABAA...", "dtype": "float32", "shape": [2, 2]},
  "span": null,
  "_checked_type_": "TensorType([2,2], float32)"
}
(2) 优化Pass中的常量修改
class ConstantMutator : public AttrMutator {
 public:
  void VisitAttrs(AttrVisitor* v) override {
    if (v->IsMutator()) {  // 检查是否为修改模式
      runtime::NDArray new_data = ...; // 生成新数据
      v->Visit("data", &new_data);    // 修改data字段
    }
  }
};

// 调用示例:
ConstantMutator mutator;
const_node->VisitAttrs(&mutator);  // 修改常量数据
(3) 调试打印
class DebugPrinter : public AttrVisitor {
 public:
  void Visit(const char* key, runtime::NDArray* data) override {
    std::cout << key << ": shape=" << data.Shape();
  }
};

DebugPrinter printer;
const_node->VisitAttrs(&printer);  // 输出:data: shape=[2,2]

2. Python 场景示例

(1) 直接属性访问
import tvm
from tvm import relay

# 创建常量
data = tvm.nd.array(np.zeros((2,2), dtype="float32"))
const = relay.Constant(data)

# Python属性访问(背后调用VisitAttrs)
print(const.data)      # 访问NDArray → 触发Visit("data", &data)
print(const.span)      # 访问源码位置 → Visit("span", &span)

输出

<tvm.nd.NDArray shape=(2, 2), dtype=float32>
None  # 未设置span时的默认值
(2) 模型保存与加载
# 保存模型(触发序列化)
mod = tvm.IRModule.from_expr(const)
mod.save("const.json")  # 内部调用VisitAttrs

# 加载模型(触发反序列化)
loaded_mod = tvm.ir.load_json("const.json")
loaded_const = loaded_mod["main"].body
assert isinstance(loaded_const, relay.Constant)
(3) 自定义属性访问器
class MyVisitor(tvm.ir.AttrVisitor):
    def visit(self, name, value):
        print(f"Attribute {name} has type {type(value)}")

visitor = MyVisitor()
const.visit_attrs(visitor)  # 显式调用VisitAttrs

输出

Attribute data has type <class 'tvm.runtime.ndarray.NDArray'>
Attribute span has type <class 'tvm.ir.Span'>
...

class Constant;
/*!
 * \brief Constant tensor type.
 */
class ConstantNode : public ExprNode {
 public:
  /*! \brief The data of the tensor */
  runtime::NDArray data;

  /*! \return The corresponding tensor type of the data */
  TensorType tensor_type() const;

  /*! \return Whether it is scalar(rank-0 tensor) */
  bool is_scalar() const { return data->ndim == 0; }

  void VisitAttrs(tvm::AttrVisitor* v) {
    v->Visit("data", &data);
    v->Visit("span", &span);
    v->Visit("mdata", &mdata);
    v->Visit("_checked_type_", &checked_type_);
  }

  bool SEqualReduce(const ConstantNode* other, SEqualReducer equal) const {
    return equal(data, other->data);
  }

  void SHashReduce(SHashReducer hash_reduce) const { hash_reduce(data); }

  static constexpr const char* _type_key = "relay.Constant";
  TVM_DECLARE_FINAL_OBJECT_INFO(ConstantNode, ExprNode);
};

class Constant : public Expr {
 public:
  /*!
   * \brief The constructor
   * \param data The data of the constant tensor.
   * \param span The source span of the expression.
   */
  TVM_DLL explicit Constant(runtime::NDArray data, Span span = Span(), MetaData mdata = MetaData());

  TVM_DEFINE_OBJECT_REF_METHODS(Constant, RelayExpr, ConstantNode);
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值