JUC学习笔记六:ForkJoin

ForkJoin

1.forkjoin原理

fork join是在jdk1.7开发出来,他的原理的就是提供并行的任务,提高效率。
在大数据量的前提下,把一个任务拆分成多个任务去执行,再把多个任务的结果汇总起来成为最终的结果
在这里插入图片描述

2.forkjoin工作特点

工作窃取
在这里插入图片描述
假设有两个任务运行,A任务运行到一半阻塞了,B任务运行完了,那么这时候B任务就会把A任务接过来运行,提高运行的效率
这个里面使用的就是双端队列

3.forkjoin的使用

在这里插入图片描述
使用的时候需要继承RecursiceTask

package com.ycm.forkjoin;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;

/**
 * 计算求和任务
 */
public class ForkJoinDemo extends RecursiveTask<Long> {
    private Long start;
    private Long end;

    private Long temp = 10000L; //临界值

    public ForkJoinDemo(long start, long end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Long compute() {
        if ((end - start) < temp) {
            Long sum = 0L;
            for (Long i = start; i <= end; i++) {
                sum += i;
            }
            return sum;
        } else {
            Long mid = (start + end) / 2;
            ForkJoinDemo task1 = new ForkJoinDemo(start, mid);
            task1.fork();//拆分任务,把任务压入线程队列中
            ForkJoinDemo task2 = new ForkJoinDemo(mid + 1, end);
            task2.fork();
            return task1.join() + task2.join(); //把任务合并
        }

    }
}

class test {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //test1();//运行时间:8171
        //test2(); //运行时间:7745
        test3(); //运行时间:380
    }

    /**
     * 常规计算
     */
    public static void test1() {
        Long start = System.currentTimeMillis();
        Long sum = 0L;
        for (Long i = 1L; i <= 10_0000_0000; i++) {
            sum += i;
        }
        Long end = System.currentTimeMillis();
        Long time = end - start;
        System.out.println("结果:" + sum + "  运行时间:" + time);
    }

    /**
     *使用forkjoin计算
     */
    public static void test2() throws ExecutionException, InterruptedException {
        Long start = System.currentTimeMillis();
        ForkJoinPool forkJoinPool = new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoinDemo(1L, 10_0000_0000L);
        ForkJoinTask<Long> submit = forkJoinPool.submit(task);
        Long sum = submit.get();
        Long end = System.currentTimeMillis();
        Long time = end - start;
        System.out.println("结果:" + sum + "  运行时间:" + time);
    }

    /**
     * 使用流式分布式计算
     */
    public static void test3() {
        Long start = System.currentTimeMillis();
        long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
        Long end = System.currentTimeMillis();
        Long time = end - start;
        System.out.println("结果:" + sum + "  运行时间:" + time);
    }
}

得出结果:

  1. 使用常规计算,运行速度慢,效率低
  2. 使用forkjoin相对常规计算速度快些,而且参数可调
  3. 使用stream流式计算效率最高,代码简洁
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值