ForkJoin
1.forkjoin原理
fork join是在jdk1.7开发出来,他的原理的就是提供并行的任务,提高效率。
在大数据量的前提下,把一个任务拆分成多个任务去执行,再把多个任务的结果汇总起来成为最终的结果
2.forkjoin工作特点
工作窃取
假设有两个任务运行,A任务运行到一半阻塞了,B任务运行完了,那么这时候B任务就会把A任务接过来运行,提高运行的效率
这个里面使用的就是双端队列
3.forkjoin的使用
使用的时候需要继承RecursiceTask
package com.ycm.forkjoin;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.concurrent.RecursiveTask;
import java.util.stream.LongStream;
/**
* 计算求和任务
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;
private Long end;
private Long temp = 10000L; //临界值
public ForkJoinDemo(long start, long end) {
this.start = start;
this.end = end;
}
@Override
protected Long compute() {
if ((end - start) < temp) {
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
} else {
Long mid = (start + end) / 2;
ForkJoinDemo task1 = new ForkJoinDemo(start, mid);
task1.fork();//拆分任务,把任务压入线程队列中
ForkJoinDemo task2 = new ForkJoinDemo(mid + 1, end);
task2.fork();
return task1.join() + task2.join(); //把任务合并
}
}
}
class test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1();//运行时间:8171
//test2(); //运行时间:7745
test3(); //运行时间:380
}
/**
* 常规计算
*/
public static void test1() {
Long start = System.currentTimeMillis();
Long sum = 0L;
for (Long i = 1L; i <= 10_0000_0000; i++) {
sum += i;
}
Long end = System.currentTimeMillis();
Long time = end - start;
System.out.println("结果:" + sum + " 运行时间:" + time);
}
/**
*使用forkjoin计算
*/
public static void test2() throws ExecutionException, InterruptedException {
Long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(1L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);
Long sum = submit.get();
Long end = System.currentTimeMillis();
Long time = end - start;
System.out.println("结果:" + sum + " 运行时间:" + time);
}
/**
* 使用流式分布式计算
*/
public static void test3() {
Long start = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
Long end = System.currentTimeMillis();
Long time = end - start;
System.out.println("结果:" + sum + " 运行时间:" + time);
}
}
得出结果:
- 使用常规计算,运行速度慢,效率低
- 使用forkjoin相对常规计算速度快些,而且参数可调
- 使用stream流式计算效率最高,代码简洁