- 博客(7)
- 收藏
- 关注
原创 TransFusion论文笔记
论文名称:TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers。
2023-07-07 10:39:08 578 1
原创 AutoAlign论文笔记
论文名称:AutoAlign: Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection。
2023-07-02 15:17:40 455 1
原创 GUP Net论文笔记
是鸟瞰图视角,水平和竖直方向单位都是m,竖直方向是深度,其中绿色框是原始预测框,蓝色框和红色框分别是物体3D高度偏移 +0.1m 和 -0.1m 时的预测框,偏移了接近4m。节得到的 ROI 特征上预测 3D 信息:3D 偏移分支预测 3D 中心在 2D 特征图上的投影与 2D 中心的偏移;现有方法通常预测物体在2D和3D空间中的高,在此基础上计算深度,这会导致小的高度误差会被放大,产生大的深度误差,如。有监督学习,网络可以准确预测出 3D 高度的分布,在此基础上预测深度的分布。,将粗糙的中心位置细化;
2023-06-30 17:14:07 162
原创 3D检测中深度离散化
单目3D目标检测中通常需要进行深度估计,一般是将回归问题转化为分类问题,先根据数据集确定好深度的最大最小值,然后在这个范围内划分多个区间(远处的物体有着更大的深度值和更少的视觉特征,这会产生大的损失值,从而主导训练过程并且增加不确定性。因为是离散的,取中值的精度不够,所以在训练阶段结合分类和回归任务,用到。的阈值,实心矩形表示预测的边界框,蓝色矩形表示真实框,可以看到。来降低远处物体的权重,但是这种方法会产生太密集的。),从而变成分类问题,预测深度值属于哪个区间。公式,给定的连续深度值。
2023-06-17 10:54:48 601 5
原创 FCOS论文笔记
FCOS 将目标检测当作类似于语义分割的像素级别的密集预测任务,提出了一种基于的检测方法。利用唯一的后处理NMS,FCOS+ResNeXt-64x4d-101达到了44.7% AP,更简单而且比当时基于anchor的counterparts精度更高,达到了单阶段检测器的sota。FCOS 后来也被用于3d目标检测,如 FCOS3D,DD3D等。方法是把 anchor 作为训练样本,方法是把特征图上的每个点作为训练样本,直接在上面回归边界框。把backbone第iii层的特征图记为Fi∈RH×。
2023-06-11 19:47:20 288
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人