AcWing 91. 最短Hamilton路径

状压dp 二进制

给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。

Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。

输入格式
第一行输入整数 n。

接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i 到 j 的距离(记为 a[i,j])。

对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]。

输出格式
输出一个整数,表示最短 Hamilton 路径的长度。

数据范围
1≤n≤20
0≤a[i,j]≤107

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18

首先我们要思考如果让这个NP完全题目复杂度降低,那么可以优先考虑到使用位运算,状态压缩等解决思路。
然后接着思考,我们可以发现,我们所需要的不是整个方案,而只是方案最优解,所以我们只需要记录当前这个方案的最优解即可,那么我们考虑的状态,不久只有,在当前方案i中,目前抵达的点是j。
现在既然装填已经确定好了当前点j,那么这个j点是由哪一个状态移动而来的呢?我们可以选择k,也就是说我们的状态转移方程可以为

f[i][j]=min(f[i][j],f[i^(1<<j)][k]+weight[k][j]

以上转移方程,weight数组为权值 ,也就是weight[k][j]是k点到j点的权值 i^(1<<j)的意思是,i 异或 1右移j位,具体来说就是i这个方案集合 xor 10……0,(其中1的位置在第j位)。
那么这个位运算有什么用处呢,第一点它是在判断第j位的情况,第二点位运算处理速度很快。

#include <bits/stdc++.h>
using namespace std;
int n,f[1<<20][21],i,j,k;
int weight[21][21];
int main()
{
    ios::sync_with_stdio(false);//加快cin的读入速度,但是scanf将会不能用。
    memset(f,0x3f,sizeof(f));//初始化最大值
    cin>>n;
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            cin>>weight[i][j];
    f[1][0]=0;//第一个点是不需要任何费用的
    for (i=1; i<(1<<n); i++)//i代表着是一个方案集合,其中每一个位置1和0,代表着这个点经过还是没有经过
        for (j=0; j<n; j++)//枚举当前到了哪一个点
            if ((i>>j & 1))//如果i集合中第j位是1,也就是到达过这个点
                for (k=0; k<n; k++)//枚举到达j的点k
                    if ((i^(1<<j)) >> k & 1)//重点,判断k和j的条件,具体在上面解说
                        f[i][j]=min(f[i][j],f[i^(1<<j)][k]+weight[k][j]);//选择最小值,也就是判断,k点到j点最优,还是以前的方案最优
    cout<<f[(1<<n)-1][n-1];//输出最后的最优值
    return 0;
}
哈密顿回路是一种经过图中每个节一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节 if(pos == n) { // 判断最后一个节是否与第一个节相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节是否可达 private static boolean isValid(int node, int pos) { // 如果节已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节与当前节不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节开始,依次尝试访问其它节,直到找到一条哈密顿路径或者遍历完所有节。在查找过程中,我们使用visited数组来标记节是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节是否可达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值