线性表的查找技术:
(1)普通的顺序查找方法
(2)带监视哨的顺序查找方法
(3)折半查找
#include
using namespace std;
const int MaxSize = 100;
class LineSearch{
public:
LineSearch(int a[ ], int n); //构造函数
~LineSearch( ) { } //析构函数为空
int SeqSearch(int k); //顺序查找
int BinSearch1(int k); //折半非递归查找
int BinSearch2(int low, int high, int k); //折半递归查找
private:
int data[MaxSize]; //查找集合为整型
int length; //查找集合的元素个数
};
LineSearch :: LineSearch(int a[ ], int n){
for (int i = 0; i < n; i++)
data[i+1] = a[i]; //查找集合从下标1开始存放
length = n;
}
顺序查找 (线性查找)——基本思想:
从线性表的一端向另一端逐个将关键码与给定值进行比较,
若相等,则查找成功,给出该记录在表中的位置;
若整个表检测完仍未找到与给定值相等的关键码,则查找失败,给出失败信息。
int LineSearch :: SeqSearch(int k)
{
i=n;
while (i>0 && data[i]!=k)
i--;
return i;
}
改进的顺序查找——基本思想:
设置“哨兵”。
哨兵就是待查值,将哨兵放在查找方向的尽头处,
免去了在查找过程中每一次比较后都要判断查找位置是否越界,提高查找速度。
int LineSearch :: SeqSearch(int k)
{
int i = length; //从数组高端开始比较
data[0] = k; //设置哨兵
while (data[i] != k) //不用判断下标i是否越界
i--;
return i;
}
ASL(usucc)=n+1
顺序查找查找性能的改进方法:
记录每个数据的访问频率,
把访问频率高的数据移向顺序表的右端
可以减少查找成功时所进行的比较次数,提高效率
构造有序的顺序表
减少查找失败时所进行的比较次数,提高查找效率
单链表的顺序查找:
int LinkSearch::SeqSearch2(Node *first, int k){
Node *p;
int count=0;//记录比较的次数
p=first->next;
int j=1;//记录数据在表中的位置
while (p && p->data != k)
{p=p->next; j++; count++;}
if (!p){
cout<<“查找失败,比较的次数为:"<<count<<endl;
return 0;
} else{
cout<<“\n”<<“查找成功,比较的次数为:"<<count<<endl;
return j;
}
}
顺序查找的优点:
对存储结构没有任何要求,顺序存储和链接存储均可;
对有序性也没有要求,无论记录是否按关键码有序均可。
顺序查找的缺点:
平均查找长度较大,特别是当待查找集合中元素较多时,查找效率较低。
折半查找:
适用条件:
线性表中的记录必须按关键码有序;
必须采用顺序存储。
基本思想:
在有序表中(low, high,low<=high),
取中间记录作为比较对象,
若给定值与中间记录的关键码相等,则查找成功;
若给定值小于中间记录的关键码,则在中间记录的左半区继续查找;
若给定值大于中间记录的关键码,则在中间记录的右半区继续查找。
不断重复上述过程,直到查找成功,或所查找的区域无记录,查找失败。
int LineSearch :: BinSearch1(int k){
int mid, low = 1, high = length; //初始查找区间是[1, n]
while (low <= high) {//当区间存在时
mid = (low + high) / 2;
if (k < data[mid])
high = mid - 1;
else if (k > data[mid])
low = mid + 1;
else
return mid; //查找成功,返回元素序号
}
return 0; //查找失败,返回0
}
int LineSearch :: BinSearch2(int low, int high, int k){
if (low > high)
return 0; //递归的边界条件
else {
int mid = (low + high) / 2;
if (k < data[mid])
return BinSearch2(low, mid-1, k);
else if (k > data[mid])
return BinSearch2(mid+1, high, k);
else
return mid; //查找成功,返回序号
}
}