查找技术(线性表)

线性表的查找技术:

(1)普通的顺序查找方法
(2)带监视哨的顺序查找方法
(3)折半查找

#include 
using namespace std;
const int MaxSize = 100;
class LineSearch{
public:
    LineSearch(int a[ ], int n); //构造函数
   ~LineSearch( ) { } //析构函数为空
    int SeqSearch(int k); //顺序查找
    int BinSearch1(int k); //折半非递归查找
    int BinSearch2(int low, int high, int k); //折半递归查找
private:
    int data[MaxSize]; //查找集合为整型
    int length; //查找集合的元素个数
};
LineSearch :: LineSearch(int a[ ], int n){
    for (int i = 0; i < n; i++)
        data[i+1] = a[i]; //查找集合从下标1开始存放
    length = n;
}
顺序查找 (线性查找)——基本思想:

从线性表的一端向另一端逐个将关键码与给定值进行比较,

若相等,则查找成功,给出该记录在表中的位置;
若整个表检测完仍未找到与给定值相等的关键码,则查找失败,给出失败信息。

int LineSearch :: SeqSearch(int k)
{   
     i=n;
     while (i>0 && data[i]!=k)
         i--;
     return i;
}
改进的顺序查找——基本思想:

设置“哨兵”。
哨兵就是待查值,将哨兵放在查找方向的尽头处
免去了在查找过程中每一次比较后都要判断查找位置是否越界,提高查找速度。

int LineSearch :: SeqSearch(int k)
{ 
    int i = length;        //从数组高端开始比较
    data[0] = k;           //设置哨兵
    while (data[i] != k) //不用判断下标i是否越界
        i--;
    return i; 
}

ASL(usucc)=n+1

顺序查找查找性能的改进方法:
记录每个数据的访问频率,
把访问频率高的数据移向顺序表的右端
可以减少查找成功时所进行的比较次数,提高效率
构造有序的顺序表
减少查找失败时所进行的比较次数,提高查找效率

单链表的顺序查找:
int LinkSearch::SeqSearch2(Node *first, int k){  
	Node *p;
	int count=0;//记录比较的次数
	p=first->next; 
	int j=1;//记录数据在表中的位置
      while (p &&  p->data != k)
	{p=p->next;	j++;    count++;}
	if (!p){
             cout<<“查找失败,比较的次数为:"<<count<<endl; 	
             return 0;
     } else{
	    cout<<“\n”<<“查找成功,比较的次数为:"<<count<<endl; 	 
          return j;
	}
}
顺序查找的优点:

对存储结构没有任何要求,顺序存储和链接存储均可;
对有序性也没有要求,无论记录是否按关键码有序均可。

顺序查找的缺点:

平均查找长度较大,特别是当待查找集合中元素较多时,查找效率较低。

折半查找:

适用条件:
线性表中的记录必须按关键码有序;
必须采用顺序存储。

基本思想:
在有序表中(low, high,low<=high),
取中间记录作为比较对象,
若给定值与中间记录的关键码相等,则查找成功;
若给定值小于中间记录的关键码,则在中间记录的左半区继续查找;
若给定值大于中间记录的关键码,则在中间记录的右半区继续查找。
不断重复上述过程,直到查找成功,或所查找的区域无记录,查找失败。

在这里插入图片描述

int LineSearch :: BinSearch1(int k){
     int mid, low = 1, high = length; //初始查找区间是[1, n]
     while (low <= high) {//当区间存在时
          mid = (low + high) / 2; 
          if (k < data[mid]) 
              high = mid - 1;
          else if (k > data[mid]) 
               low = mid + 1; 
          else
               return mid; //查找成功,返回元素序号
      }
      return 0; //查找失败,返回0
}

int LineSearch :: BinSearch2(int low, int high, int k){
      if (low > high) 
          return 0; //递归的边界条件
      else {
         int mid = (low + high) / 2;
      if (k < data[mid]) 
           return BinSearch2(low, mid-1, k);
      else if (k > data[mid]) 
           return BinSearch2(mid+1, high, k); 
      else 
           return mid; //查找成功,返回序号
     }
}

加油,学好数据结构!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值