【图像分割】GrabCut分割

本文详细介绍了基于图论的图像分割方法GrabCut和GraphCuts,GrabCut作为GraphCuts的改进版,允许用户通过简单的矩形选择和点选来交互式地分割图像。GrabCut利用前景和背景的颜色模型,采用高斯混合模型,通过迭代优化达到更好的分割效果。文章还提供了完整的Python代码示例,展示了如何应用GrabCut进行图像分割,并解释了代码的工作原理。
摘要由CSDN通过智能技术生成

GrabCut分割

GrabCut是对GraphCuts的改进版,是迭代的Graph Cut。

基于Graph Cuts分割

Graph Cuts是基于图论的分割方法。

第一种普通顶点对应于图像中的每个像素。每两个邻域顶点(对应于图像中每两个邻域像素)的连接就是一条边。

另外两个终端顶点,叫S ( source:代表前景)和T(sink:代表背景)。
每个普通顶点和这2个终端顶点之间都有连接,组成第二种边。

Graph Cuts中的Cuts是指这样一个边的集合,该集合中所有边的断开会导致残留”S"和"T”图的分开,所以就称为“割”。

如果一个割,它的边的所有权值之和最小,那么这个就称为最小割,也就是图割的结果。

在这里插入图片描述

改进Graph Cuts分割(GrabCut分割)

只需要在目标外面画一个框,把目标框住,它就可以完成良好的分割。

在这里插入图片描述

如果增加额外的用户交互(由用户指定一些像素属于目标),那么效果就可以更完美。在这里插入图片描述

前景/背景的颜色模型

假定前景和背景为高斯混合模型(GMM)。

对于每个像素,要么来自于目标GMM的某个高斯分量,要么就来自于背景GMM的某个高斯分量。

用边界项来体现邻域像素之间不连续的惩罚,如果两邻域像素差别很小,那么它属于同一个目标或者同一背景的可能性就很大,反之则可能是边缘

通过K-means算法迭代获得。

GrabCut算法流程

(1)使用标记初始化颜色模型(K=5)

(2)迭代进行Graph Cut

  • 优化前景和背景的颜色模型
  • 能量随着不断迭代变小
  • 分割结果越来越好

完整代码如下

from __future__ import print_function

import numpy as np
import cv2 as cv
import sys

BLUE = [255,0,0]        # rectangle color
RED = [0,0,255]         # PR BG
GREEN = [0,255,0]       # PR FG
BLACK = [0,0,0]         # sure BG
WHITE = [255,255,255]   # sure FG

DRAW_BG = {'color' : BLACK, 'val' : 0}
DRAW_FG = {'color' : WHITE, 'val' : 1}
DRAW_PR_FG = {'color' : GREEN, 'val' : 3}
DRAW_PR_BG = {'color' : RED, 'val' : 2}

# setting up flags
rect = (0,0,1,1)
drawing = False         # flag for drawing curves
rectangle = False       # flag for drawing rect
rect_over = False       # flag to check if rect drawn
rect_or_mask = 100      # flag for selecting rect or mask mode
value = DRAW_FG         # drawing initialized to FG
thickness = 3           # brush thickness

def onmouse(event,x,y,flags,param):
    global img,img2,drawing,value,mask,rectangle,rect,rect_or_mask,ix,iy,rect_over

    # Draw Rectangle
    if event == cv.EVENT_RBUTTONDOWN:
        rectangle = True
        ix,iy = x,y

    elif event == cv.EVENT_MOUSEMOVE:
        if rectangle == True:
            img = img2.copy()
            cv.rectangle(img,(ix,iy),(x,y),BLUE,2)
            rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))
            rect_or_mask = 0

    elif event == cv.EVENT_RBUTTONUP:
        rectangle = False
        rect_over = True
        cv.rectangle(img,(ix,iy),(x,y),BLUE,2)
        # rect = (min(ix,x),min(iy,y),abs(ix-x),abs(iy-y))
        rect_or_mask = 0
        print(" Now press the key 'n' a few times until no further change \n")

    # draw touchup curves

    if event == cv.EVENT_LBUTTONDOWN:
        if rect_over == False:
            print("first draw rectangle \n")
        else:
            drawing = True
            cv.circle(img,(x,y),thickness,value['color'],-1)
            cv.circle(mask,(x,y),thickness,value['val'],-1)

    elif event == cv.EVENT_MOUSEMOVE:
        if drawing == True:
            cv.circle(img,(x,y),thickness,value['color'],-1)
            cv.circle(mask,(x,y),thickness,value['val'],-1)

    elif event == cv.EVENT_LBUTTONUP:
        if drawing == True:
            drawing = False
            cv.circle(img,(x,y),thickness,value['color'],-1)
            cv.circle(mask,(x,y),thickness,value['val'],-1)

if __name__ == '__main__':

    # print documentation
    print(__doc__)

    # Loading images
    if len(sys.argv) == 2:
        filename = sys.argv[1] # for drawing purposes
    else:
        print("No input image given, so loading default image, ../data/lena.jpg \n")
        print("Correct Usage: python grabcut.py <filename> \n")
        filename = 'H:/pictures/butterfly.jpg'

    img = cv.imread(filename)
    img2 = img.copy()                               # a copy of original image
    # mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
    output = np.zeros(img.shape,np.uint8)           # output image to be shown

    # input and output windows
    cv.namedWindow('output')
    cv.namedWindow('input')
    cv.setMouseCallback('input',onmouse)
    cv.moveWindow('input',img.shape[1]+10,90)

    print(" Instructions: \n")
    print(" Draw a rectangle around the object using right mouse button \n")

    while(1):

        cv.imshow('output',output)
        cv.imshow('input',img)
        k = cv.waitKey(1)

        # key bindings
        if k == 27:         # esc to exit
            break
        elif k == ord('0'): # BG drawing
            print(" mark background regions with left mouse button \n")
            value = DRAW_BG
        elif k == ord('1'): # FG drawing
            print(" mark foreground regions with left mouse button \n")
            value = DRAW_FG
        elif k == ord('2'): # PR_BG drawing
            value = DRAW_PR_BG
        elif k == ord('3'): # PR_FG drawing
            value = DRAW_PR_FG
        elif k == ord('s'): # save image
            bar = np.zeros((img.shape[0],5,3),np.uint8)
            res = np.hstack((img2,bar,img,bar,output))
            cv.imwrite('grabcut_output.png',res)
            print(" Result saved as image \n")
        elif k == ord('r'): # reset everything
            print("resetting \n")
            rect = (0,0,1,1)
            drawing = False
            rectangle = False
            rect_or_mask = 100
            rect_over = False
            value = DRAW_FG
            img = img2.copy()
            mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
            output = np.zeros(img.shape,np.uint8)           # output image to be shown
        elif k == ord('n'): # segment the image
            print(""" For finer touchups, mark foreground and background after pressing keys 0-3
            and again press 'n' \n""")
            if (rect_or_mask == 0):         # grabcut with rect
                bgdmodel = np.zeros((1,65),np.float64)
                fgdmodel = np.zeros((1,65),np.float64)
                cv.grabCut(img2,mask,rect,bgdmodel,fgdmodel,1,cv.GC_INIT_WITH_RECT)
                rect_or_mask = 1
            elif rect_or_mask == 1:         # grabcut with mask
                bgdmodel = np.zeros((1,65),np.float64)
                fgdmodel = np.zeros((1,65),np.float64)
                cv.grabCut(img2,mask,rect,bgdmodel,fgdmodel,1,cv.GC_INIT_WITH_MASK)

        mask2 = np.where((mask==1) + (mask==3),255,0).astype('uint8')
        output = cv.bitwise_and(img2,img2,mask=mask2)

    cv.destroyAllWindows()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫余

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值