HashMap简介
哈希表(hash table)
也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表,这种数据结构提供了键(key
)和值(value
)的映射关系,时间复杂度接近于O(1)。HashMap
就是一个哈希表,它存储的内容是键值对(key-value)映射
- HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的
- HashMap 的实例有两个参数影响其性能:“初始容量” 和 “加载因子”
- 初始容量 是哈希表中桶的数量,初始容量只是哈希表在创建时的容量
- 加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。
- 当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
- 通常默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折中。加载因子过高虽然减少了空间开销,但同时也增加了查询成本。在设置初始容量时应该考虑到映射中所需的条目数及其加载因子,以便最大限度地减少 rehash 操作次数。如果初始容量大于最大条目数除以加载因子,则不会发生 rehash 操作
HashMap数据结构
java.lang.Object
↳ java.util.AbstractMap<K, V>
↳ java.util.HashMap<K, V>
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable { }
HashMap
继承于AbstractMap
类,实现了Map
接口Map
是"key-value键值对"接口AbstractMap
实现了"键值对"的通用函数接口
HashMap
是通过"拉链法"实现的哈希表。它包括几个重要的成员变量:table
,size
,threshold
,loadFactor
,modCount
table
是一个Entry[]
数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的size
是HashMap
的大小,实际存储的key-value
键值对的个数threshold
是HashMap
的阈值,HashMap
在进行扩容时需要参考threshold
,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,
threshold
=capacity
*loadFactory
loadFactor
负载因子,代表了table的填充度有多少,默认是0.75,加载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。 所以加载因子默认为0.75,也就是说大小为16的HashMap,到了第13个元素,就会扩容成32modCount
HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时, 如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作), 需要抛出异常ConcurrentModificationException
HashMap源码分析
基本属性
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16, HashMap的默认初始容量
static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量, 如果在创建HashMap时显示指定HashMap的大小, 则不能超过这个值, 否则会默认使用这个值
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认负载因子
static final int MIN_TREEIFY_CAPACITY = 64;//当HashMap的容量大于这个值, 一个位置冲突过多时才能转为红黑树, 否则解决冲突过多的方式是扩容
static final int TREEIFY_THRESHOLD = 8;//冲突时元素会用链表连起来, 当链表的长度达到了这个值, 就会转换为红黑树
static final int UNTREEIFY_THRESHOLD = 6;//当红黑树的结点数量少于这个值的时候, 会转换回链表
int threshold; //当前容量与负载因子的乘积, 用于判断是否要扩容
构造器
HashMap
一共有4个构造器
// 默认构造函数
HashMap()
// 指定“容量大小”的构造函数
HashMap(int capacity)
// 指定“容量大小”和“加载因子”的构造函数
HashMap(int capacity, float loadFactor)
// 包含“子Map”的构造函数
HashMap(Map<? extends K, ? extends V> map)
构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值
initialCapacity
默认为16
loadFactory
默认为0.75
哈希冲突
在插入过程中,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞
哈希冲突的解决方案有多种:
- 开放定址法(发生冲突,继续寻找下一块未被占用的存储地址)
- 散列函数法
- 链地址法
HashMap即是采用了链地址法,也就是数组 + 链表的方式
HashMap的实现原理
以JDK7
为例,首先在实例化以后,底层会创建一个长度为16的一维数组Entry[] table
,对于执行put(key1, value1)
操作,首先调用key1
所在类的hashCode()
计算可key1
哈希值,此哈希值经过一些算法计算后,会得到在Entry数组中的存放位置:
- 如果此位置上的数据为空,此时
key1-value1
就直接添加成功 ---------情况一 - 如果此位置上的数据不为空(意味着此位置上存在一个或多个数据(多个数据以链表形式存在)),然后就比较
key1
和已经存在的一个或多个数据的哈希值:- 如果
key1
的哈希值与已经存在的数据的哈希值都不相同,则key1-value1
添加成功 --------情况二 - 如果
key1
的哈希值和已经存在的某一个数据的哈希值相同,则继续比较,调用key1
所在类的equals()
方法,比较:- 如果
equals()
返回false,此时key1-value1
添加成功 ----------情况三 - 如果
equals()
返回true,则使用value1
替换value2
----------情况四
- 如果
- 如果
JDK8
相较于JDK7
在底层进行了一定的修改:
new HashMap()
时,底层没有创建一个长度为16的数组,而是调用put
方法时创建JDK8
底层的数组是:Node[]
,而不是Entry[]
(修改了数组名)JDK7
底层结构只有:数组 + 链表,而JDK8
的底层架构是:数组 + 链表 + 红黑树(最重要的区别)。当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当数组的长度 > 64 时,此时该索引位置上的所有数据由链表存储改称为红黑树存储
JDK 7
底层是数组 + 链表实现
HashMap的主干是一个Entry
数组,是HashMap的基本组成单元,每一个Entry
包含一个key-value
键值对(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)
结构示意图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7CVKjIak-1623123054306)(https://img2020.cnblogs.com/blog/1844597/202103/1844597-20210306160736375-1235081035.png)]
其中一个构造器源码
// initialCapacity: 容量大小 loadFactor: 加载因子
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
// 计算阀值
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
// 创建 Entry数组
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}
Entry[]
数组
transient Entry[] table;
Entry
是HashMap中的一个静态内部类
static class Entry<K,V> implements Map.Entry<K,V> {
final K key; // 键
V value; // 值
Entry<K,V> next; // 下一个节点,单链表结构
int hash; // 对key的HashCode值进行hash运算后得到的值,避免重复计算
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
}
存储Put()
方法
public V put(K key, V value) {
// HashMap 允许存放 null 键和 null 值。
// 当 key 为 null 时,调用 putForNullKey 方法,将 value 放置在数组第一个位置。
if (key == null)
return putForNullKey(value);
// 根据 key 的 keyCode 重新计算 hash 值。
int hash = hash(key.hashCode());
// 搜索指定 hash 值在对应 table 中的索引。
int i = indexFor(hash, table.length);
// 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++; //保证并发访问时,若HashMap内部结构发生变化,快速响应失败
// 将 key、value 添加到 i 索引处。
addEntry(hash, key, value, i);
return null;
}
// 存取 key == null 键值对
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
// 计算Hash值
final int hash(Object k) {
int h = 0;
if (useAltHashing) {
if (k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h = hashSeed;
}
h ^= k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// 计算下标索引
static int indexFor(int h, int length) {
return h & (length-1); // 效率比 % 高
}
// 根据 hash值 索引值 将 key-value存到指定位置
void addEntry(int hash, K key, V value, int bucketIndex) {
// 判断是否需要进行扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
// 插入key-value
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
Entry[]
数组扩容
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
// 当就容量已经等于最大容量时,已经扩容不了,只能将阀值增到最大值
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity]; // 创建新Entry[]数组
boolean oldAltHashing = useAltHashing;
useAltHashing |= sun.misc.VM.isBooted() &&
(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean rehash = oldAltHashing ^ useAltHashing;
transfer(newTable, rehash);
table = newTable; // 新Entry[]数组
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1); // 新阀值
}
get()
获取方法
public V get(Object key) {
if (key == null) // 处理key = null的情况
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
// key == null 的情况
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key); // 获取hash值
for (Entry<K,V> e = table[indexFor(hash, table.length)];// 获取指定下标索引的值
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
JDK 8
底层是数组 + 链表 + 红黑树实现
HashMap
的主干是一个Node
数组,是HashMap的基本组成单元,每一个Node
包含一个key-value
键值对(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)
transient Node<K,V>[] table;
Node是HashMap中的一个静态内部类
// Node部分代码
static class Node<K,V> implements Map.Entry<K,V> {
final int hash; // 对key的HashCode值进行hash运算后得到的值,避免重复计算
final K key; // 键
V value; // 值
Node<K,V> next; // 下一个节点,单链表结构
// 构造器
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
}
在JDK1.8
之前,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(node的next指向null),那么查找,添加等操作很快,仅需一次寻址即可;
如果定位到的数组包含链表:
- 添加操作,首先遍历链表,存在即覆盖,否则新增
- 查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找
因此,从性能考虑,HashMap中的链表出现越少,性能才会越好
下面看HashMap
其中一个构造器
public HashMap(int initialCapacity, float loadFactor) {
//此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
}
可以发现,在构造器中其中,并没有为数组table分配内存空间(参数为Map的构造器除外)
因此真正构建table数组是在执行put操作时
查看put()
操作
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
// hash方法
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 真正put的方法
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
// tab: Node数组
// p: node节点
// n: 数组长度
// i: 下标索引
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0) // 如果table数组为空,或者table数组长度为0
n = (tab = resize()).length; // 创建Node[]数组
if ((p = tab[i = (n - 1) & hash]) == null) // (n - 1) & hash 根据Hash计算下标索引
tab[i] = newNode(hash, key, value, null); // 如果为null说明这个位置是个空位,直接填充
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k)))) // key相同的情况
e = p;
else if (p instanceof TreeNode) // 存储的节点是红黑树结构
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else { // 不是红黑树结构(链表结构)
for (int binCount = 0; ; ++binCount) {
// 最后一个节点
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 判断是否变成红黑树
treeifyBin(tab, hash);//TREEIFY_THRESHOLD = 8 当链表的长度达到了这个值, 就会转换为红黑树
break;
}
// 不是最后一个节点 继续比较 如果找到了相同点节点就直接退出
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e; // 下一个节点
}
}
// 替换过程
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount; //保证并发访问时,若HashMap内部结构发生变化,快速响应失败
if (++size > threshold) // 如果HashMap大小超过了阀值,则进行重构
resize();
afterNodeInsertion(evict);
return null;
}
// 红黑树扩容
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize(); // 执行扩容操作
else if ((e = tab[index = (n - 1) & hash]) != null) { // 执行转换成红黑树操作
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
// 往红黑树添加数据
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk))) // 找到相同的值
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null; // 执行到这代表添加成功,并且返回null表示添加成功
}
}
}
resize()
方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) { // 处理容量
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) // 扩容操作
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr; // 处理负载因子
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; // 创建数组
table = newTab;
if (oldTab != null) { // 如果旧数组不为null,需要把旧数组的元素重新存放在新数组中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
执行逻辑图:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Thztl0RL-1623123054308)(https://img2020.cnblogs.com/blog/1844597/202103/1844597-20210306160807368-966080198.png)]