数据处理之Numpy(以数组为例)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_44832215/article/details/89106652

数据处理之Numpy(以数组为例)

工具使用

Anaconda

Numpy简介

Numpy 的英文全称为 Numerical Python,指Python 面向数值计算的第三方库。Numpy 的特点在于,针对 Python 内建的数组类型做了扩充,支持更高维度的数组和矩阵运算,以及更丰富的数学函数。Numpy 是 Scipy.org 中最重要的库之一,它同时也被 Pandas,Matplotlib 等我们熟知的第三方库作为核心计算库。
NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。
Numpy包括了:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。Numpy和稀疏矩阵运算包scipy配合使用更加方便。

下面使用Numpy库进行对数组的一些操作

数组的创建(创建全0数组,全1数组,随机数数组)
首先我们导入numpy库命名为np以便我们后续调用

import numpy as np

创建全0数组

np.zeros((2,4))

在这里插入图片描述
创建全1数组

np.ones((2,4))

在这里插入图片描述
生成随机数组

np.random.randint(0,10,(3,2))

在这里插入图片描述

== 数组的属性(查看数组的维度,数组元素的个数)==

生成一个随机数组,并查看这个随机数组的维度

a=np.random.randint(0,10,(2,4))
a.shape

在这里插入图片描述
数组元素的个数

 a.size

在这里插入图片描述
数组的维度操作(将数组的行变列,返回最后一个元素,返回第1到第2个元素,返回逆序的数组)

定义一个数组并将行变为列

a = np.array([[1,2,3],[4,5,6]])
a.transpose()

在这里插入图片描述
返回最后一个元素

a[-1]

在这里插入图片描述
返回第一到第二个元素

a[1:2]

在这里插入图片描述
返回逆序数组

 a[::-1]

在这里插入图片描述
数组的合并(数组的水平合并,垂直合并,深度合并)
定义两个数组并将其水平合并

a = np.arange(9).reshape(3,3)
b = np.arange(9,18).reshape(3,3)
 np.hstack((a,b))

在这里插入图片描述
垂直合并

np.vstack((a,b))

在这里插入图片描述
深度合并

np.dstack((a,b))

在这里插入图片描述

数组的拆分(数组的水平拆分,垂直拆分)
定义一个数组进行水平拆分

a = np.arange(9).reshape(3,3)
np.hsplit(a, 3)

在这里插入图片描述
垂直拆分

np.vsplit(a, 3)

在这里插入图片描述

数组运算(与常的四则运算,与数组的四则运算,判断数组是否相等)
定义两个数组与常数进行运算

 a = np.arange(4, dtype=np.float32).reshape(2,2)
 b = np.arange(4, 8, dtype=np.float32).reshape(2,2)
a+2

在这里插入图片描述
这两个数组之间进行运算

a/b

在这里插入图片描述
判断这两个数组是否相等

 (a == b).all() 

在这里插入图片描述
数组的常用函数(数组所有元素的和、积、平均值、最大值、最小值、方差、标准差)
定义一个数组并计算所有元素的和

 a = np.array([3,2,4])
 a.sum()

在这里插入图片描述
计算所有元素的积

 a.prod()

在这里插入图片描述
计算所有元素的平均数

a.mean()

在这里插入图片描述
最大值

 a.max()

在这里插入图片描述
最小值

a.min()

在这里插入图片描述
方差

 a.var()

在这里插入图片描述
标准差

a.std()

在这里插入图片描述

没有更多推荐了,返回首页