【论文精读】在两个空间尺度上将推特使用与灾难恢复能力相关联:飓风“桑迪”的案例研究

Annals of GIS论文推荐 | 在两个空间尺度上将推特使用与灾难恢复能力相关联:飓风“桑迪”的案例研究


在这里插入图片描述

引用本文
Kejin Wang, Nina S. N. Lam & Volodymyr Mihunov (2023) Correlating Twitter Use with Disaster Resilience at Two Spatial Scales: A Case Study of Hurricane Sandy, Annals of GIS, 29:1, 1-20, DOI: 10.1080/19475683.2023.2165545

原文链接

一、研究背景

抗灾能力是指社区通过抗灾能力建设活动从灾害影响中恢复过来的能力。对抗灾能力的研究需要解决的首要问题是:如何衡量和增强社区的抗灾能力,进而为灾难期间决策提供支持。

灾害对社区的影响因其社会和地理特征而异,因此,了解是什么因素影响抗灾能力的社会地理差异至关重要,这反过来又将提高社区的整体抗灾能力。

社交媒体具有信息现势性的优势,并且提供了一种观察人类态度和反应的创新方式,许多关于灾后应急管理和抗灾能力建设的研究都使用了社交媒体数据,包括2012年桑迪飓风、2012年艾萨克飓风、2013年科罗拉多洪水、2014年加利福尼亚旱灾、以及2017年的飓风哈维等。研究结果表明,社交媒体数据在检测受影响地区的状况、估计损失、监测救援请求和改进应急管理方面有很大帮助。同时,这些研究记录了社交媒体使用方面存在明显的社会和地理差异,穷人和农村社区在应对灾害时往往落后,其影响是,这些弱势社区无法从使用社交媒体作为信息来源或额外的沟通渠道中受益,这可能会使他们更难从灾难中恢复。

二、需要解决的问题

之前关于社交媒体和灾害的研究基本都是在国家或城市范围内进行,但是存在在粗空间尺度下,描述社区恢复力特征的结果过于宽泛的问题,无法确定恢复力建设需要关注的领域。

因此,本文通过分析飓风桑迪期间推特使用的社会和地理差异,在县、镇、区(以邮政编码划分地区)的空间尺度上,需要解决以下两个基本问题:(1)当在邮政编码地区进行研究时,先前研究中在县级发现的社交媒体使用差异和抗灾能力差异之间的关系是否仍然存在?(2)使用邮政编码地区级别的数据可以揭示哪些新的信息或模式?

由于社交媒体数据的固有问题,如虚假信息、恶意使用、缺乏验证以及用户的演示图形构成有偏见,仅使用社交媒体数据进行抗灾分析是值得怀疑的。因此,结合传统数据,如地理、社会经济和遥感数据,将使灾害分析结果更加准确。

具有更高恢复能力的社区往往有更高的推特使用率。年轻人较多、教育程度较高、城市化程度较高、经济条件较好的县有更多的推特活动。

三、 数据和方法

  • 采用指标: 受灾害影响地区推特使用指数和社区恢复力指标

  • 空间尺度: 县和邮政编码地区尺度

  • 时间尺度: 飓风桑迪期间与灾害相关的推特的使用情况

  • 研究区域: 有损失统计数据的县及其邮政编码区,包括53个县和1342个邮政编码区。

3.1 推特数据收集和指数计算

FEMA将应急管理划分为四个阶段——准备、响应、恢复和缓解。使用这个应急管理框架,我们使用“飓风”和“桑迪”两个关键词,收集了从2012年10月23日飓风桑迪形成到2012年11月12日飓风消散约两周的推特使用数据。这三个阶段被定义为:准备(2012年10月23日至28日)、应对(2012年10月29日至31日)和恢复(2012年11月1日至12日)。

  • 数据来源:从Gnip股份有限公司购买的完整的推特数据集

  • 文本内容:每条推文都包括其时间、内容、用户配置文件信息、可能的位置信息,如x-y坐标和地名。

  • 数据总量:一个县一级54208条推文(占总数的0.33%)和邮政编码地区一级48856条推文的数据

  • 两个推特指数:推特比率(TR)和情绪得分(SE)

TR是一个阶段内,一个县或邮政编码区每10000人的平均每日推特数量

在这里插入图片描述

SE是一个阶段内以区域为单位的地理标记推文的平均情绪得分。推特内容的情绪分析已被用来表明公众对事件的实时态度。

为了验证抗灾能力较高的社区在灾难期间通常在推特上有更积极的反应这一假设,我们使用了VADER(识别推理器的Valence Aware Dictionary),为每条推特分配一个SE(Hutto和Gilbert,2014)。得分范围从−1(最负)到1(最正)

3.2 地理、灾害和社会经济数据

  • 地理数据:包括四个变量,到飓风路径的距离到登陆地点的距离、离海岸线的距离以及飓风风速造成的威胁程度

带有风速数据的飓风轨迹可从国家大气研究中心(NCAR)网站获取。

使用ArcGIS中的核密度方法,根据飓风路径位置和风速生成威胁密度面。

根据飓风桑迪登陆时的程度定义390公里的带宽(搜索半径),使用的网格尺寸为30米×30米,然后使用区域统计方法生成每个区域单元的飓风威胁等级。如图(a)所示

在这里插入图片描述

  • 经济损失数据:从联邦应急管理局网站获得,使用2010年的人口数字,将所有地区单位每1000人的损失进行了划分。

  • 社会经济指标:选取美国人口普查中选择并收集了2010年的10项社会经济指标用于代表了社区的抗灾能力。可以用来测试灾难期间推特使用的社会和地理差异是否存在

在这里插入图片描述

3.3 研究步骤

(1)使用VADER计算所有推特的情绪得分

(2)提取了带有地理标签的推文。使用ArcGIS Pro将带有地理标记的推文制表成县和邮政编码区。

(3)使用推特比率公式计算了每个区域单元的推特比率,并计算了它们各自的平均情绪得分。

(4)对于地理变量(包括威胁级别、到海岸的距离、到跟踪的距离和到登陆的距离),使用ArcGIS Pro内核密度和距离接近工具创建表面,然后根据各自的面积单位将值制成表格。

(5)为了解决第一个研究问题并检验这两个假设,我们首先比较了描述性统计数据,包括两个量表上所有变量的变异系数。然后比较了推特指数(TR和SE)与地理、损害和社会经济变量之间的皮尔逊乘积矩相关系数。为了解决第二个研究问题,我们提取了推特比率排名前五的邮政编码区域,以显示对推特使用的精细分析是否可以发现县级分析无法发现的新信息。我们还分析了情绪得分前三的邮政编码地区,以提供进一步的信息

(6)可视化分析:绘制了三个阶段和整个时期的TR和SE,以提供进一步的视觉分析。

四、结论

4.1 推特比率的时空模式

时间变化分析表明,推特数量随着飓风桑迪的威胁程度而变化;威胁越高,人们发送的相关推文就越多。飓风桑迪期间推特的每日总数如下图:
在这里插入图片描述

绘制县和邮政编码地区三个阶段和整个时期的推特比率(TR)模式。得出,县级地图显示了更普遍的空间模式,更容易将趋势可视化。邮政编码级别所有阶段的总体TR趋势与县级类似,邮政编码地区层面的分析比县级分析揭示了更多的显著预测因素。
在这里插入图片描述

在这里插入图片描述

4.2 情绪得分的时空模式

相比于响应阶段,在准备和恢复阶段,更多的县有更积极的情绪。

与推特比率一样,情绪得分存在空间波动情况,在邮政编码地区层面上有更多的极值。

负面推文提到了损失、恶劣天气、停电和对个人健康的影响,而正面推文则讨论了飓风过后对受害者的良好祝愿和救济,这些推文很可能来自未受影响的用户。

在县一级,恢复阶段的SE与所有地质和破坏变量之间存在显著相关性,表明,该县离登陆地点或海岸越近,受到的威胁和破坏越大,人们的情绪就越积极。一个可能的解释是,高损伤区域可能会产生更多令人鼓舞的信息,从而产生更积极的情绪。

总的来说,在响应和恢复阶段发送了更多的极端价值情绪推文。正面推文的内容包括表达良好的祝愿、积极的重建态度、对飓风准备的信心、帮助受害者的组织或个人设施的行动、对恢复电力和水的感激之情等。负面推文提到了危险的洪水状况、对停电的沮丧、死亡、道具损坏、学校关闭等。这些推文与飓风桑迪期间发生的事件的时间线非常吻合

4.3 两个基本问题的回答

本文对两种假设进行了检验和证实。

结果表明,在先前研究中发现的推特使用指数与代表社区抗灾能力的社会环境变量之间相关性仍然成立,一个社区对自然灾害的抵御能力越强,推特活动就越多,推特的积极性就越强,但在邮政编码地区层面,推特比率和社区抵御能力指标之间的相关性较弱

对邮政编码地区层面数据的进一步分析表明,推特率高的邮政编码地区通常是主要的交通枢纽,商业和旅游活动频繁区域,但夜间活动人口较少,因此也是影响相关性的因素。

五、讨论

未来的研究应考虑:

(1)增加有关土地利用类型和人口动态的数据,以帮助改善社交媒体在抗灾能力分析中的使用。

(2)采用多尺度分析方法可以减少分析中涉及的不确定性,并更全面地了解推特使用与受影响社区的地理和社会经济特征之间的关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值