例:给定一个数组,将数组中的元素向右或向左移动k次
int[] A={1,2,3,4,5,6,7} 向右移动k=3次,结果为{5,6,7,1,2,3,4}
解法1: 直接旋转法
public static void rotate1(int[] nums, int k) {
for (int i = 0; i < k; i++) {
int prev = nums[nums.length - 1];
for (int j = 0; j < nums.length; j++) {
int temp = nums[j];
nums[j] = prev;
prev = temp;
}
}
System.out.println(Arrays.toString(nums));
}
将数组的最后一个数字保存起来。在内层循环中j++,一直与prev交换,保证实现一次完整的旋转,需要k次,外层循环k次。
在内存循环里,每个元素都被移动一次(O(n)),外层循环k次(O(K)),时间复杂度O(n * k)。
解法2: 使用额外的数组
public static void rotate2(int[] nums, int k){
int[] nums1 = new int[nums.length];
for(int i = 0;i < nums.length;i++){
nums1[(i + k) % nums.length] = nums[i];
}
for(int i = 0; i < nums1.length;i++){
nums[i] = nums1[i];
}
System.out.println(Arrays.toString(nums));
}
重新创建一个新的数组,将旋转k次之后的正确的位置的正确是值写入新数组中。nusm1[(i + k) % nums.length] = nums[i].
时间复杂度:O(n)
空间复杂度:O(n)
解法3: 使用反转,反转数组
public static void rotate3(int[] nums, int k){
k = k % nums.length;
reverse(nums,0,nums.length - 1);
reverse(nums,0,k -1);
reverse(nums,k,nums.length - 1);
System.out.println(Arrays.toString(nums));
}
public static void reverse(int[] nums,int A,int B){
// if(A < B) {
// for (int i = A; i < B / 2 ; i++) {
// int fron = nums[i];
// nums[i] = nums[B - i];
// nums[B - i] = fron;
// }
// }
//错误原因:当k = 3时,循环相当于没跑
while(A < B){
int fron = nums[A];
nums[A] = nums[B];
nums[B] = fron;
A++;
B--;
}
}
反转数组过程:
原始数组:{1,2,3,4,5,6,7}
第一步:先将数组整个反转回来即:{7,6,5,4,3,2,1};
第二部:将前K个先反转回来,即{5,6,7,4,3,2,1};
第三步:将后 n- k个数字反转回来,即{5,6,7,1,2,3,4}.
时间复杂度:O(1)
空间复杂度:O(1)
注意:在反转数组reverse这个方法中,不能使用for循环,用while循环,注意必须条件 A < B 的使用。