自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 第四周 MobileNet_ShuffleNet

SENet的注意力机制可以加在空间位置上,通过在空间上计算并应用通道注意力权重,来强调或抑制不同空间位置的特征。同时,它也可以加在通道维度上,通过在通道上计算并应用通道注意力权重,来调整每个通道在全局特征中的重要性。可以探索更复杂的特征融合方式,可以结合多个尺度和层级的特征,采用更先进的融合方法,如Attention机制、多级特征融合等,提升模型对高光谱图像信息的理解和表达能力。在网络中使用了 Dropout,训练时随机丢弃一些节点,测试时仍然在丢弃,导致每次测试时分类的结果都不一样。

2023-08-05 11:13:07 150

原创 第二周 卷积神经网络

dataloader 里面 shuffle 取不同值有什么区别?DataLoader 中shuffle 参数用于控制数据加载顺序。它有三种不同的取值,分别是 True、False 和一个整数值。当 shuffle=True 时,数据会在每个 epoch(训练集全部数据的一次遍历)开始之前被随机打乱。这样可以确保每个 epoch 中的样本顺序都是不同的,有助于模型学习到更好的特征,避免模型对于固定顺序的数据过度拟合。当 shuffle=False 时,数据将按照原始顺序加载,不会进行打乱。

2023-07-20 22:29:38 530

原创 第一周 深度学习基础

AlexNet是一个经典的深度卷积神经网络,它在2012年的ImageNet图像分类挑战中取得了显著的突破。以下是AlexNet的一些特点,以及取得更好的性能的原因。AlexNet相比于LeNet来说有更深的网络结构,包含了5个卷积层和3个全连接层。深度网络有助于提取更高层次的抽象特征,能够更好地捕捉图像中的复杂模式和结构。直接在原始的图片上进行网络训练,没有预先进行特征提取。相比于LeNet中的Sigmoid激活函数,AlexNet采用了非饱和的ReLU激活函数。

2023-07-11 15:33:31 383

原创 OpenMMLab 实战营打卡 - 第 3 课

图像分类 MMClassification

2023-02-04 21:18:43 169 1

原创 OpenMMLab AI实战营第二天笔记

卷积神经网络 图像分类

2023-02-03 21:17:14 196

原创 OpenMMLab AI实战营第一天笔记

神经网络、卷积神经网络

2023-02-02 20:51:59 88

原创 Anaconda中安装opencv-python

anaconda安装opencv-python

2023-01-19 20:44:26 1771

原创 anaconda环境中安装pytorch+cuda+cudnn

anaconda pytorch

2023-01-16 16:29:00 3596 1

原创 shell练习题与python练习题

软件技术先导实践shell课后题python练习题

2022-03-12 16:10:31 950 1

原创 Linux中解压zip文件

简单记录一下linux中如何解压zip文件首先要安装unzipsudo apt install unzip之后可以使用下面命令来解压文件:unzip file.zip将文件解压到指定文件夹中,如果该文件夹不存在,将会被创建unzip file.zip -d directory...

2022-01-21 17:37:49 69907

转载 第四次作业:CNN实战

使用VGG模型进行猫狗大战import numpy as npimport matplotlib.pyplot as pltimport osimport shutil,osimport torchimport torch.nn as nnimport torchvisionfrom torchvision import models,transforms,datasetsimport timeimport json# 判断是否存在GPU设备device = torch.devi

2021-10-23 16:04:04 528

转载 第三次作业:卷积神经网络

视频学习心得及问题总结代码练习MNIST数据集分类使用PyTorch进行CNN的训练与测试加载数据 (MNIST)创建网络定义训练和测试函数在小型全连接网络上训练(Fully-connected network)在卷积神经网络上训练由上面的测试结果可以发现,含有相同参数的 CNN 效果明显优于简单的全连接网络,因为CNN 可以通过卷积和池化更好地挖掘图像中的信息。打乱像素顺序再次在两个网络上训练与测试把图像中的像素打乱顺序,卷积和池化就难以发挥作用了。在全连接网络上训练与

2021-10-15 15:43:45 257

转载 2021-10-04 第一次作业:深度学习基础

第一次作业:深度学习基础视频学习心得及问题总结代码练习2.1pytorch基础练习定义数据定义操作2.2 螺旋数据分类构建线性模型分类构建两层神经网络分类个人想法视频学习心得及问题总结视频中印象比较深刻的是深度学习中的一些“不能”,如算法输出不稳定、模型复杂度高、难以纠错和调试、模型层级复合程度高、参数不透明、端到端训练方式对数据依赖性强、模型增量性差、对开放性推理问题无能为力、人类知识无法有效引入进行监督,机器偏见难以避免。我意识到深度学习还是有很多不足的地方。因为算法依赖于大数据,但数据不是中立的,

2021-10-04 21:58:20 274

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除