软件工程
文章平均质量分 83
记录一些课程的学习
leeleesir
这个作者很懒,什么都没留下…
展开
-
第四次作业:CNN实战
使用VGG模型进行猫狗大战 import numpy as np import matplotlib.pyplot as plt import os import shutil,os import torch import torch.nn as nn import torchvision from torchvision import models,transforms,datasets import time import json # 判断是否存在GPU设备 device = torch.devi转载 2021-10-23 16:04:04 · 530 阅读 · 0 评论 -
第三次作业:卷积神经网络
视频学习心得及问题总结 代码练习 MNIST数据集分类 使用PyTorch进行CNN的训练与测试 加载数据 (MNIST) 创建网络 定义训练和测试函数 在小型全连接网络上训练(Fully-connected network) 在卷积神经网络上训练 由上面的测试结果可以发现,含有相同参数的 CNN 效果明显优于简单的全连接网络,因为CNN 可以通过卷积和池化更好地挖掘图像中的信息。 打乱像素顺序再次在两个网络上训练与测试 把图像中的像素打乱顺序,卷积和池化就难以发挥作用了。 在全连接网络上训练与转载 2021-10-15 15:43:45 · 257 阅读 · 0 评论 -
2021-10-04 第一次作业:深度学习基础
第一次作业:深度学习基础视频学习心得及问题总结代码练习2.1pytorch基础练习定义数据定义操作2.2 螺旋数据分类构建线性模型分类构建两层神经网络分类个人想法 视频学习心得及问题总结 视频中印象比较深刻的是深度学习中的一些“不能”,如算法输出不稳定、模型复杂度高、难以纠错和调试、模型层级复合程度高、参数不透明、端到端训练方式对数据依赖性强、模型增量性差、对开放性推理问题无能为力、人类知识无法有效引入进行监督,机器偏见难以避免。我意识到深度学习还是有很多不足的地方。因为算法依赖于大数据,但数据不是中立的,转载 2021-10-04 21:58:20 · 274 阅读 · 0 评论