数据分析【方差分析】四

该博客详细介绍了方差分析的核心概念,包括单因素方差分析的前提条件,如独立性、正态性和方差齐性。接着,讨论了多重比较和事后检验的重要性,并给出了如何在Python中使用SciPy进行单因素方差分析的例子。此外,还涉及了协方差和相关系数的计算及其在数据分析中的应用。
摘要由CSDN通过智能技术生成

方差分析的核心

在这里插入图片描述
什么是方差分析:方差分析是假设检验的一种延续与扩展,主要用于多个总体均值(三组或三组以上均值)是否相等做出假设检验,研究分类型自变量对数值型因变量的影响。
它的零假设和设备假设分别为:
在这里插入图片描述
在这里插入图片描述

单因素方差分析的前提条件

独立性

组内独立(随机抽样、随机分配;样本容量<10%总体容量)
组间独立(非配对)

正态性:各组总体服从正态分布

样本容量较大(每组样本容量≥10)时,如果一定程度上违反了正态性,仍可以使用ANOVA
样本容量较小时,如果违反了正态性,则应使用非参数方法进行分析

方差齐性:各组总体的方差相等

各组样本的样本容量相等时,如果一定程度上违反了方差齐性,仍可以使用ANOVA
各组样本的样本容量不相等时,如果最大的样本标准差与最小的样本标准差之比不超过2,仍可以使用ANOVA

单因素方差分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

多重比较

在这里插入图片描述
对于方差分析的结论,如果拒绝了原假设H0,则有必要进一步分析,到底是哪两组均值不相等,这就是多重比较。
post-hoc(事后检验)
方差未知且相等的情况下,对两个总体均值差的检验
在这里插入图片描述
校正α
α*=α/比较次数

以比较μ1和μ2为例:
在这里插入图片描述
p = 2 * 0.0096=0.019 > α*=0.05/3=0.017 接受H0

单因素方差分析的SciPy实现

CCSS案例中提供了2030年4月,以及2030、2031、2032年12月四个时间点的消费者信心监测数据, 现希望分析这四个时间点的消费者信心指数平均水平是否存在差异。这里只使用北京消费者的数据进行分析。

SciPy单因素方差分析

import scipy.stats as ss
# 描述北京消费者不同时间的消费信心指数
ccss.query("s0 == '北京'&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逆龙泰氽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值