神经网络与深度学习 记录贴(第三周)



一、深度学习平台简介

在这里插入图片描述

1.1 PyTorch简介

  • PyTorch是一个Python的深度学习库。它最初由Facebook人工智能研究小组开发,而优步的Pyro软件则用于概率编程。
  • 最初,PyTorch由Hugh Perkins开发,作为基于Torch框架的LusJIT的Python包装器。PyTorch在Python中重新设计和实现Torch,同时为后端代码共享相同的核心C库。
  • 除了Facebook之外,Twitter、GMU和Salesforce等机构都采用了PyTorch。
  • 到目前,据统计已有80%的研究采用PyTorch,包括Google
    学习资源:动手学深度学习 官方教程

1.1.1 PyTorch与TensorFlow2的对比

PyTorchTensorFlow2
上手简单、学习速度快上手难
部署能力稍弱部署方便、稳定
支持动态图支持动态图
函数简洁、运用灵活函数封装复杂

1.1.2 PyTorch基本概念

  • 张量
    是一个物理量,对高维(维数 ≥ 2) 的物理量进行“量纲分析” 的一种工具。简单的可以理解为:一维数组称为矢量,二维数组为二阶张量,三维数组为三阶张量
  • 计算图
    用“结点”(nodes)和“线”(edges)的有向图来描述数学计算的图像。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“size可动态调整”的多维数据数组,即“张量”(tensor)
  • 使用 tensor 表示数据
  • 使用 Dataset、DataLoader 读取样本数据和标签
  • 使用变量 (Variable) 存储神经网络权值等参数
  • 使用计算图 (computational graph) 来表示计算任务
  • 在代码运行过程中同时执行计算图

1.1.3 简单示例

构建简单的计算图,每个节点将零个或多个tensor作为输入,产生一个tensor作为输出。PyTorch中,所见即为所得,tensor的使用和numpy中的多维数组类似:

import torch

x_const = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([3.0, 4.0, 5.0])
output = x_const + y
print(x_const, '\n', y, '\n',output)

1000个散点样本,求出回归方程

定义网络 :

import torch.nn as nn

class LinearRegression(nn.Module): 
    def __init__(self): 
         super(LinearRegression, self).__init__()
         self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1 
    def forward(self, x):
        out = self.linear(x)
        return out

进行训练:

model = LinearRegression()
params = list(model.named_parameters())
(_, w) = params[0]
(_, b) = params[1]
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.3)
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = 2*x + 10 + torch.rand(x.size())
for epoch in range(20):
        inputs = x 
        target = y 
        out = model(inputs) # 向前传播
        loss = criterion(out, target) # 向后传播
        optimizer.zero_grad() # 注意每次迭代都需要清零
        loss.backward()
        optimizer.step()
        print('Epoch: {}, w: {:.4f},b:{:.4f}'.format(epoch + 1, float(w.data), 
float(b.data)))
model.eval()

二、卷积神经网络基础

2.1 基本概念

  • 全连接网络:链接权过多,难算难收敛,同时可能进入局部极小值,也容易产生过拟合问题
  • 局部连接网络:顾名思义,只有一部分权值连接。部分输入和权值卷积。
  • 填充(Padding),也就是在矩阵的边界上填充一些值,以增加矩阵的大小,通常用0或者复制边界像素来进行填充。
    在这里插入图片描述
  • 步长(Stride):如图步长为2
    在这里插入图片描述
  • 多通道卷积:如RGB
  • 池化(Pooling)
    思想:使用局部统计特征,如均值或最大值。解决特征过多问题
    在这里插入图片描述
  • 卷积神经网络结构
    构成:由多个卷积层和下采样层构成,后面可连接全连接网络
    卷积层:k个滤波器
    下采样层:采用mean或max
    后面:连着全连接网络
    在这里插入图片描述
  • 学习算法 递推
    前向传播定义为:
    在这里插入图片描述
    如果第𝑙层是卷积+池化层,则:
    在这里插入图片描述

三、LeNet-5网络

3.1 网络结构

在这里插入图片描述

3.1.1 结构详解

  • C1层
    6个Feature map构成
    每个神经元对输入进行55卷积
    每个神经元对应5
    5+1个参数,共6个feature map,
    2828个神经元,因此共有
    (5
    5+1)6(28*28)=122,304连接
  • S2层 Pooling层
    在这里插入图片描述
  • C3层 卷积层
    在这里插入图片描述
  • S4层 与S2层工作相同
  • C5层
    120个神经元
    每个神经元同样对输入进行55卷积,与S4全连接
    总连接数(5
    5*16+1)*120=48120
  • F6层
    84个神经元
    与C5全连接
    总连接数(120+1)*84=10164
  • 输出层
    由欧式径向基函数单元构成
    每类一个单元
    输出RBF单元计算输入向量和参数向量之间的欧式距离
  • 网络结构
    在这里插入图片描述

3.1.2 与现在网络区别

  • 卷积时不进行填充(padding)
  • 池化层选用平均池化而非最大池化
  • 选用Sigmoid或tanh而非ReLU作为非线性环节激活函数
  • 层数较浅,参数数量小(约为6万)

普遍规律——随网络深入,宽、高衰减,通道数增加

3.1.3 误差反向传播

随着网络深入,宽、高衰减,通道数增加。依然使用经典的BP算法进行权值更新。
池化层根据是平均池化还是最大值池化,将误差反传至卷积层:
平均池化

平均池化

在这里插入图片描述

最大值池化

误差从卷积层传回池化层:
在这里插入图片描述
式中五角星表示图像卷积,计算时需首先上下、左右翻转后再做相关
网络结构可视化:https://adamharley.com/nn_vis/cnn/3d.html

3.1.4 LeNet5代码实现

import torch
from torch import nn
from d2l import torch as d2l
 
net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))
 
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)
 
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]
 
 
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')
 
 
lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值