深度学习与神经网络第三周学习笔记

文章介绍了目标检测的基本概念,包括精确率和召回率,并详细讲解了AP计算方法。接着,文章深入讨论了YOLO算法,解释了其网络结构和输入处理方式,指出YOLO如何通过一步法解决目标检测问题,特别是对多类目标和小目标的处理策略。
摘要由CSDN通过智能技术生成


一、评价指标

1.1 算法评估相关概念

  • TP: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数
  • FP: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数
  • FN:被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数
  • TN: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数

P(精确率):TP/(TP+FP)
R(召回率):TP/(TP+FN)。召回率越高,准确度越低

1.2 AP计算

mAP:均值平均准确率

A P = ∑ k = 1 N p ( k ) Δ r ( k ) AP=\sum_{k=1}^Np(k)\Delta r(k) AP=k=1Np(k)Δr(k)
其中 N N N代表测试集中所有图片的个数, p ( k ) p(k) p(k)表示能识别出k个图片的时候Precision的值,而 Δ r ( k ) \Delta r(k) Δr(k)则表示识别图片个数从k-1变化到k时(通过调整阈值)Recall值的变化情况。

二、目标检测与YOLO

2.1 目标检测问题描述

目标检测是在给定的图片中精确找到物体所在位置,并标注出物体的类别。物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,并且物体还可以是多个类别。
在这里插入图片描述

2.2 目标检测基本原理

很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测。

目标检测在多个领域中被广泛使用。例如,在无人驾驶里,我们需要通过识别拍摄到的视频图像里的车辆、行人、道路和障碍的位置来规划行进线路。机器人也常通过该任务来检测感兴趣的目标。安防领域则需要检测异常目标,如歹徒或者炸弹。

2.3 目标检测预备知识

  • 边界框
    在目标检测里,我们通常使用边界框(bounding box)来描述目标位置。边界框是一个矩形框,可以由矩形左上角的x和y轴坐标与右下角的x和y轴坐标确定。
  • 锚框
    目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)

2.4 滑动窗口

把目标检测化简为分类问题。利用一个窗口从左到右、从上到下滑动,可以对于葫芦娃的脸进行分类,能够识别出来脸,就做到了目标检测。基本原理示意图如下
在这里插入图片描述
滑动窗口的问题:

  • 滑动次数太多,计算太慢
  • 目标大小不同,每一个滑动位置需要用很多框

滑动窗口的改进:

  • 一般图片中,大多数位置都不存在目标。
  • 可以确定那些更有可能出现目标的位置,再有针对性的用CNN进行检测——两步法(Region Proposal)
  • 两步法依然很费时!
  • 进一步减少出现目标的位置,而且将目标分类检测和定位问题合在一个网络里——一步法(YOLO)

一步法思想:将分类问题扩展为回归+分类问题
在这里插入图片描述

  • 有一个框里有多个,有个多个框里有一个,怎么办?
    多个框里有一个目标,取目标中心点所在框(一个框里有多个,暂不能解决)
  • 多类目标怎么办?
    使用独热编码扩展类别数
  • 小目标怎么办?
    使用单独网络拟合小目标,即设置多个bounding box.

2.5 YOLO网络结构

在这里插入图片描述
实际的检测结果是一个高维张量
在这里插入图片描述
网络结构包含24个卷积层和2个全连接层;其中前20个卷积层用来做预训练,后面4个是随机初始化的卷积层,和2个全连接层。

2.5.1 YOLO输入与模型处理

  • YOLO v1在PASCAL VOC数据集上进行的训练,因此输入图片为448 × 448 × 3。 实际中如为其它尺寸,需要resize或切割成要求尺寸

  • YOLO模型处理
    将图片分割为 S 2 S^2 S2个grid(𝑆 = 7),每个grid cell的大小都是相等的
    每个格子都可以检测是否包含目标
    OLO v1中,每个格子只能检测一种物体(但可以不同大小)
    在这里插入图片描述

2.5.2 YOLO网络输出

  • 输出是一个7 × 7 × 30的张量。对应7 × 7个cell
  • 每个cell对应2个包围框(boundingbox, bb),预测不同大小和宽高比,对应检测不同目标。每个bb有5个分量,分别是物体的中心位置(𝑥, 𝑦)和它的高(ℎ) 和宽 (𝑤) ,以及这次预测的置信度。
    在这里插入图片描述
    图片被分成了49个框,每个框预测2个bb,因此上面的图中有98个bb
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值