一、题目
1、题目描述
给你一个整数数组 nums 和两个整数 indexDiff 和 valueDiff 。
找出满足下述条件的下标对 (i, j):
i != j,
abs(i - j) <= indexDiff
abs(nums[i] - nums[j]) <= valueDiff
如果存在,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [1,2,3,1], indexDiff = 3, valueDiff = 0
输出:true
解释:可以找出 (i, j) = (0, 3) 。
满足下述 3 个条件:
i != j --> 0 != 3
abs(i - j) <= indexDiff --> abs(0 - 3) <= 3
abs(nums[i] - nums[j]) <= valueDiff --> abs(1 - 1) <= 0
示例 2:
输入:nums = [1,5,9,1,5,9], indexDiff = 2, valueDiff = 3
输出:false
解释:尝试所有可能的下标对 (i, j) ,均无法满足这 3 个条件,因此返回 false 。
提示:
2 <= nums.length <= 105
-109 <= nums[i] <= 109
1 <= indexDiff <= nums.length
0 <= valueDiff <= 109
2、基础框架
- C++版本给出的基础框架如下:
3、原题链接
https://leetcode.cn/problems/contains-duplicate-iii/
二、解题报告
1、思路分析
(
1
)
(1)
(1)根据条件abs(i - j) <= indexDiff,我们可以设置一个滑动窗口,滑动窗口大小为indexDiff
(
2
)
(2)
(2)滑动窗口移动时,为当前要加入滑动窗口的元素寻找窗口内是否有元素满足与当前元素差值的绝对值小于等于valueDiff。
(
3
)
(3)
(3)如果有,则返回true,说明找到了,否则继续移动滑动窗口。
2、时间复杂度
3、代码详解
class Solution {
public:
bool containsNearbyAlmostDuplicate(vector<int>& nums, int indexDiff, int valueDiff) {
set<int> st;
for (int i = 0; i < nums.size(); i++) {
set<int>::iterator it = st.lower_bound(max(nums[i], INT_MIN+valueDiff) - valueDiff);
if (it != st.end() && *it <= min(nums[i], INT_MAX-valueDiff) + valueDiff) {
return true;
}
st.insert(nums[i]);
if (i >= indexDiff) {
st.erase(nums[i-indexDiff]);
}
}
return false;
}
};
三、本题小知识
1.set的使用
set的底层使用的是红黑树,查找的时间复杂度为O(logn),删除的时间复杂度为O(1),插入的时间复杂度为O(logn)
set.lower_bound(val),返回set中大于等于val(最接近val)元素的迭代器,如果set中值都小于val,则返回set.end()